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Fig. 5. Update weights versus time with the Q-modification controller.

excitation it can be shown that the update weights of the Q-
modification controller converge to the ideal weights [20].

IV. Conclusion

In this brief, we presented a new and novel neuroadaptive
controller architecture for nonlinear discrete-time uncertain
systems based on the approach introduced in [20]. As in the
continuous-time case, this controller architecture provided fast
adaptation to effectively suppress system uncertainty while
avoiding large parameter (high gain) stabilization which can
excite unmodeled system dynamics. Extensions of the present
approach to nonlinear in the parameters neural networks as
well as output feedback control follow as in [20].
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Abstract—Neuronal variability has been thought to play an
important role in the brain. As the variability mainly comes from
the uncertainty in biophysical mechanisms, stochastic neuron
models have been proposed for studying how neurons compute
with noise. However, most papers are limited to simulating
stochastic neurons in a digital computer. The speed and the
efficiency are thus limited especially when a large neuronal
network is of concern. This brief explores the feasibility of
simulating the stochastic behavior of biological neurons in a very
large scale integrated (VLSI) system, which implements a pro-
grammable and configurable Hodgkin-Huxley model. By simply
injecting noise to the VLSI neuron, various stochastic behaviors
observed in biological neurons are reproduced realistically in
VLSI. The noise-induced variability is further shown to enhance
the signal modulation of a neuron. These results point toward the
development of analog VLSI systems for exploring the stochastic
behaviors of biological neuronal networks in large scale.
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I. Introduction

Biological neurons have been found noisy both in the gen-
eration of spikes and in the transmission of synaptic signals.
The noise comes from the random openings of ion channels,
the quantal releases of neural transmitters, the coupling of
background neural activity, etc. [19], [25]. As the noise affects
neural computation directly, it has been of great interest to
study how neurons compute with noise reliably [24]. Interest-
ingly, many studies have indicated that noise plays a beneficial
role at least by:

1) inducing neuronal variability [7];
2) enhancing the sensitivity of neurons to environmental

stimuli [26];
3) inducing synchronization between neurons [1];
4) facilitating probabilistic inference according to the

Bayes’ rule in the brain [16].

The effect on synchrony could further relate to neural disor-
ders such as Parkinson’s disease [11] and hearing loss [4].
Understanding the effect of noise is thus crucial both for
computational neuroscience and for improving the treatments
to these neural diseases.

One major approach of theoretical studies is adding white
noise to the biologically plausible, deterministic Hodgkin-
Huxley (HH) model [12], either to the dynamics of gating vari-
ables of different ion channels, or to the dynamics of the mem-
brane potential [9], [20]. As a result, the neuronal dynamics
are modeled by stochastic differential equations (SDEs). This
leads to at least two challenges for computer-based studies.
First, the maximum number of neurons or SDEs a computer
simulation can consider is limited. Many simplified models
have thus been proposed [10], [13], However, the parameters
of these models no longer relate to real biophysical properties
directly, making it more difficult to extract parameter values,
or to understand how different parameters affect neuronal
behaviors. The second challenge is that the suggestions drawn
from theoretical studies are not easy to verify with biological
neurons, owing to the difficulty in manipulating a specific
property of biological neurons independently.

Contrary to computer simulation, analog circuits are in-
herently suitable for simulating differential equations in real-
time and in parallel [3]. By the merit of the natural, differen-
tial current–voltage relationship of a capacitor, noise-induced
stochastic dynamics can be simulated by simply applying a
noise current to the capacitor and measuring its corresponding
voltage dynamics. The hardware simulation further facilitates
the building of a hybrid network incorporating both very large
scale integrated (VLSI) and biological neurons, allowing the
network behavior to be studied efficiently by tuning the prop-
erties of VLSI neurons [15]. Therefore, this brief explores the
feasibility of simulating different types of stochastic neurons in
an analog VLSI system called the Pamina, which realizes the
conductance-based HH model and runs in biologically realistic
time [21].

II. Hodgkin-Huxley Model in VLSI

Fig. 1(a) shows the Pamina chip [21] containing two HH-
type neurons. Let CM represent the membrane capacitance,
and VM the membrane voltage. Each neuron implements the
formalism CM(dVM/dt) = − ∑

i Iion,i +
∑

j Isyn,j + Istim, where
Iion,i represents an ionic current, Isyn,j a synaptic current, and
Istim the stimulating input. The general form of Iion,i is given as

Iion,i = gi · xp · yq · (VM − Ei) (1)

where gi and Ei are the maximum conductance and the
reversal potential of the ionic current, respectively. x is the
gating variable modeling the fraction of ion channels that are
activated, while y the gating variable modeling the fraction
of ion channels that are inactivated. Let λ represent either x

or y. The dynamics of λ are guided by

τλ · dλ

dt
= λ∞(VM) − λ (2)

λ∞(VM) =
1

1 + exp(−(VM − Voff,λ)/Vslope,λ)
. (3)

The minus sign in front of (VM − Voff,λ) is omitted for the
inactivation variable y. τλ is the time constant for approaching
λ∞(VM). Although τλ is a function of VM in the original HH
model, it is a constant value in the Pamina chip to simplify
circuit design. Voff,λ and Vslope,λ control the offset and the
slope of the sigmoid function, respectively.

As shown in Fig. 1(b), each Pamina neuron contains five
ionic currents, eight synaptic inputs, and one stimulating input.
The five ionic conductances include the sodium current (INa),
the potassium current (IK), the leakage current (Ileak), the
calcium current (ICa), and the calcium-dependent potassium
current (IK(Ca)). (p, q) for ICa allows users to select between
(2, 1) and (1, 0), and the function m(VM, [Ca2+]) is realized in
accordance with [14]. For the synaptic current, the dynamics
of r(Vpre,j) also obey (2) and (3) with VM replaced by the pre-
synaptic potential Vpre,j [6]. As Isyn,j and Istim have the same
form as Iion,i, all the conductances are implemented with a
library of the analog operators detailed in [21]. Finally, Vstim

and Vpre,j are externally applied voltage.
The parameters of all the conductances are stored in the

analog parameter memory [Fig. 1(a)], and the types of con-
ductances or synapses connected to each neuron are controlled
by the digital data stored in the topology memory. By inte-
grating the Pamina chip with a field-programmable-gate-array
and data converters on a customized peripheral-component-
interconnect (PCI) card, the neurons can be configured and
recorded easily through C programming in a computer. Com-
pared to other conductance-based neurons in VLSI [8], [22],
the Pamina chip has the advantages that all neuronal parame-
ters are dynamically tunable over a wide range, together with
a flexible topology. These features make the chip particular
suitable for exploring the stochastic behaviors observed in
different biological neurons.
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Fig. 1. (a) Microphotograph of the Pamina chip fabricated with the 0.35 µm
BiCMOS technology by the Austriamicrosystems. The chip area is 4170 ×
3480 µm2. (b) Block diagram of a neuron.

III. Mapping Biological Models Into VLSI

A. Parameter Extraction

The minimal HH model proposed in [18] is of our particular
interests, as different classes of cortical and thalamic neurons
have been modeled satisfactorily with a minimal number of
ionic conductances. In addition, the conductance models in
[18] are similar to those implemented in the Pamina chip,
allowing most parameters to be adopted directly for VLSI
simulation according to the mappings described as follows.

All voltage levels in the VLSI neuron are designed to be
five times greater than their corresponding values in biological
neurons, i.e., VVLSI = 5∗VBIO, while the time scale is identical
for both VLSI and biological neurons. Let CVLSI and CBIO

represent the membrane capacitances of VLSI and biological
neurons, respectively. The conductance mapping is propor-
tional to the capacitance ratio as gVLSI/gBIO = CVLSI/CBIO.
The current mapping then equals the product of the voltage

TABLE I

Parameters of Different Neurons Simulated in VLSI

FS neuron RS neuron LTS neuron

CM (µF/cm2) 1 1 1
Area (cm2) 14 × 10−5 29 × 10−5 29 × 10−5

gstim (mS/cm2) 1.08 1.08 1.08

gNa (mS/cm2) 44 44 44
ENa (mV) 50 50 50
τm (ms) 0.07 0.07 0.07
Voff,m (mV) −34.42 −34.42 −34.42
Vslope,m (mV) 6.47 6.47 6.47
τh (ms) 0.36 0.36 0.36
Voff,h (mV) −39.07 −39.07 −39.07
Vslope,h (mV) 3.932 3.932 3.932

gK (mS/cm2) 10 10 5–10
EK (mV) −90 −90 −90
τn (ms) 1 1 1
Voff,n (mV) −29.08 −29.08 −29.08
Vslope,n (mV) 7.854 7.854 7.854

gleak (mS/cm2) 0.1 0.1 0.1
Eleak (mV) −70 −70 −70

gCa (mS/cm2) – 0.35 2
ECa (mV) – −90 120
τs (ms) – 200 0.65
Voff,s (mV) – −35 −115
Vslope,s (mV) – 10 6.2
τu (ms) – – 100
Voff,u (mV) – – −120
Vslope,u (mV) – – 16

and conductance mappings, i.e., IVLSI/IBIO = 5 ∗ CVLSI/CBIO.
In the Pamina chip, CVLSI = 5nF and the biological neurons
have CBIO = CM · Area with CM and Area given in Table. I.

The only difference between the VLSI and biological neu-
rons is that the dynamics of gating variables in [18] are
modeled as dλ/dt = αλ(VM) · (1 − λ) − βλ(VM) · λ instead
of (2). The parameters τλ, Voff,λ, and Vslope,λ are thus extracted
by:

1) calculating αλ(VM) and βλ(VM) over the range VM =
[−100, 100] mV;

2) deriving λ∞(VM) according to λ∞ = αλ/(αλ + βλ);
3) setting the VM corresponding to λ∞ = 0.5 as Voff,λ;
4) and then extracting Vslope,λ at a specific λ∞.

In addition, τλ is simply calculated from τλ(VM) = [αλ(VM) +
βλ(VM)]−1 at VM = −70 mV.

Three types of neurons, the fast-spiking (FS) neurons, the
Regular-Spiking (RS) neurons, and the low-threshold-spiking
(LTS) neurons were simulated in our experiments. Table I
summarized the parameter values extracted from [18]. For the
RS neuron, the calcium conductance (ICa) was programmed
to realize the slow potassium current (IM) with (p, q) = (1, 0).
For the LTS neuron, (p, q) = (2, 1) and τs = 0.65 ms were set
to realize the low-threshold calcium current (IT ) in [18].

B. Noise Injection

While the stochastic behaviors of biological neurons were
reproduced with remarkable precision in [20] by adding white
noise (σ · W(t)) to the kinetics of gating variables, the Pam-
ina chip originally designed for simulating deterministic HH
models only allowed the noise to be added to the kinetics of
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Fig. 2. Responses of a stochastic FS neuron in VLSI with Vn = 800 mVpp
and (a) VS = 2.33-V, (b) VS = 2.34-V, (c) VS = 2.37-V.

Fig. 3. Superimpose of 37 spikes generated by a stochastic FS neuron in
VLSI with VS = 2.34−-V and Vn = 800 mVpp.

the membrane voltage as (4)

CM

dVM

dt
= −

∑

i

Iion,i +
∑

j

Isyn,j + Istim + σ · W(t). (4)

Let VM = VMd + VMs, with VMd and VMs representing the
deterministic and the stochastic components, respectively. By
Taylor expansion, λ∞(VMd + VMs) can be expressed as

λ∞(VMd + VMs) = λ∞(VMd) + λ′
∞(VMd) · VMs + o(VMs) (5)

where o(VMs) represents high-order terms of VMs. Equation (5)
indicates that although the white noise in (4) can be transferred
to the dynamics of λ in (2) via VM , the transferred noise,
λ′

∞(VMd) ·VMs + o(VMs), is no longer white due to the filtering
effect by (4). Furthermore, VMs is nonlinearly transformed by
the sigmoid function. Adding white noise to the kinetics of
VM could thus result in different responses from adding white
noise to the kinetics of λ.

With this note in mind, we superimposed the noise signal
Vn on the stimulating signal VS in the Pamina chip to obtain
Vstim = VS + Vn [Fig. 1(b)]. Vstim was then converted into
the current Istim = gstim(Vstim − Vref ), wherein the stochastic
component of Istim corresponded to σ · W(t) in (4). The effect
of the noise on different types of neurons was then explored
and discussed as follows.

Fig. 4. (a) Response of a stochastic RS neuron in VLSI to a step-input
stimulation rising from VS = 1.3-V to VS = 2.4-V at t = 0.2 s. (b) Inverse of
inter-spike-interval of a stochastic RS neuron in VLSI in response to the same
depolarizing stimulation lasting for 1600 ms with various levels of noise.

IV. Simulating Stochastic Neurons in VLSI

A. Fast-Spiking Neurons

The FS neuron is a major class of neurons in the cerebral
cortex, involving only INa, IK, and Ileak. In the absence of
noise injection, the FS neuron simulated in the Pamina
chip generates spikes only when VS ≥ 2.34−V. With
Vn = 800 mVpp superimposed on VS , the measured responses
of the FS neuron to:

1) subthreshold (VS = 2.33-V);
2) suprathreshold1 (VS = 2.34-V);
3) above-threshold (VS = 2.37-V) stimulation are shown in

Fig. 2.

Under subthreshold stimulation, the noise induced spontaneous
firings. Suprathreshold stimulation then leads to increased
spiking frequency and reduced frequency variation. As VS is
well above the threshold, the spiking frequency approaches
constant while the spiking amplitude remains slightly variable
due to the presence of noise. These phenomena have been
reported in biological experiments both in vivo and in vitro
[2], [5].

As VM is polarized to around the same minimum voltage af-
ter each spike generation, the minimum voltage can be thought
of as the initial state from which the neuron is discharged by
VS of generate the next spike. Fig. 3 superimposes 37 spikes
generated under the suprathreshold stimulation, aligning their
initial states with t = 0. With a constant VS , the time required
for discharging the membrane over the spiking threshold varies
from one spike to another. Such noise-induced variability has
been widely observed in biological neurons [17]. Although the
variability could impede neurons from coding information as
spike timing precisely, it has been found useful for auditory
neurons, for example, to encode distinct features efficiently
[4]. Therefore, the results here demonstrate the feasibility of
reproducing the stochastic behaviors of biologically realistic
neurons in VLSI by simply adding noise to the neuronal
membrane.

1The quantitative definition for suprathreshold stimulation is that the prob-
ability of generating spikes under suprathreshold stimulation is 0.5 [25].
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Fig. 5. (a)VM and (b)IT of a LTS neuron in VLSI in response to a
hyperpolarizing stimulation which was dismissed by changing VS = 2.22-V
to VS = 2.3-V at t = 0.2 s.

Fig. 6. Responses of a LTS neuron in VLSI to Vn = 1.8 Vpp superimposed
on a hyperpolarizing stimulation which was dismissed abruptly by changing
VS = 2.22-V to VS = 2.3-V at t = 0.2 s.

B. Regular-Spiking Neurons

The RS neuron has been the largest class of neurons in
the neocortex. The slow potassium current (IM) is activated
by the depolarization of neuronal membranes. Once activated,
IM functions as an extra polarizing current, causing the spiking
frequency to adapt toward a minimum.

With VS stepping from 1.3-V (inhibition) to 2.4-V (above
threshold) at t = 0.2s and Vn = 300 mVpp, the measured re-
sponses of the stochastic RS neuron in the Pamina chip
are shown in Fig. 4(a). The frequency adaptation is clearly
shown, and the noise distorts the spiking frequency during
adaptation. Let the inverse of the inter-spike-interval (ISI)
between consecutive spikes approximate the instantaneous
spiking frequency. Fig. 4(b) plots the spiking frequency of the
RS neuron during 1600 ms of the above-threshold stimulation
(VS = 2.4-V). Without noise, the spiking frequency adapts
from 137 Hz to 25 Hz gradually. The variability around 25 Hz
is attributed to the clockfeedthroughs in the PCI system. As the
noise is increased, the adaptation process becomes distorted.
The initial firing frequency further reduces when Vn is greater
than 300 mVpp, owing to the serious threshold variations
induced by the noise. On the contrary, the adaptation rate is
nearly constant for different Vn. This is because IM with a
large τs (200 ms) is less affected by noise.

This experiment demonstrates that the effect of noise can
be studied efficiently by VLSI simulation in real-time, and
the same should hold as a large network of neurons is of
concern. Although software tools such as NEURON can also
complete the simulation in Fig. 4(a) within negligible time,
the time required would increase dramatically as the number
of neurons grows.

Fig. 7. Responses of a FS neuron to (a) sinusoidal and (b) square inputs
with an offset of 2.34-V and an amplitude of 30 mV. The Vstim has been
shifted by −0.7-V.

Fig. 8. Statistical firing probability of a deterministic FS neuron in response
to (a) sinusoidal and (b) square waves.

C. Low-Threshold-Spiking Neurons

The major distinctive behavior of the LTS neuron is the
generation of a burst of spikes at the “off-set" of a hyper-
polarizing current stimulus. This property has been shown
related to the low-threshold calcium current (IT ). With the
Pamina chip programmed to simulate the LTS neuron, the
neuron generates post-inhibitory rebounds after the release
of a hyperpolarizing stimulation (at t = 0.2 s), as shown
in Fig. 5. The corresponding IT is shown to function as
a depolarizing current, inducing the spikes during its slow
inactivation.

As Vn = 1.8Vpp is superimposed on the same hyperpolarizing
stimulation, the LTS neuron responds as shown in Fig. 6.
Before the hyperpolarization ended (t < 0.2 s), the neuron
generates no spikes even if the noise amplitude plus the hy-
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Fig. 9. Responses (VM ) of a stochastic FS neuron with Vn = 800 mVpp
superimposed on (a) sinusoidal and (b) square stimuli, VS . The total input
Vstim = VS + Vn has been shifted by −0.7-V in the plots.

perpolarizing stimulation already exceeds the firing threshold
(2.34-V). This is because the noise has a maximum amplitude
with a very low likelihood and in a short period of time.
After t > 0.2s, the post-inhibitory rebounds are evoked by
the stimulation off-set, but the spiking frequency is distorted.
The magnified window further reveals dynamics analogous
to the afterdepolarization (ADP) and afterhyperpolarization
(AHP) observed in biological neurons. The ADP and AHP
could play an important role in affecting the synaptic plasticity
in the hippocampus [23] and has been simulated with a more
complex HH model with noise added to gating variables in
[20]. The feasibility of simulating sophisticated stochastic
behaviors such as ADP and AHP in real-time in VLSI is
thus demonstrated. Nevertheless, adding noise to the gating
variables would be much more effective, as discussed in
Section III-B.

D. Noise-Enhanced Signal Modulation

Except for the rich stochastic behaviors explored above,
noise has been shown useful for enhancing neurons’ sensitivity
to weak signals by the mechanism called stochastic resonance
[26]. We here demonstrate the noise-enhanced sensitivity as
the responses of a stochastic FS neuron to two weak stimuli,
one with a sinusoidal waveform and the other with a square
waveform. Both stimuli have an amplitude of 30 mV, an offset
of 2.34-V, and a frequency of 5 Hz. The offset level introduces
suprathreshold stimulation to the neuron. Without noise, the
neuron only fires when the stimulating waveform exceeds its
firing threshold, as shown in Fig. 7. The firing frequency
and the separation between consecutive groups of spikes are

Fig. 10. Statistical firing probability of a stochastic FS neuron in response
to (a) sinusoidal and (b) square waves.

very similar for both stimuli. Let the timing of each spike
be calculated as its phase with respect to the stimulating
waveforms. By recording the response to each stimulus for 2 s,
the statistical distributions of the spike timing for both stimuli
are obtained and shown in Fig. 8. The square waveform simply
results in a wider distribution than the sinusoidal wave. Given
the two spike trains are received by a post-synaptic neuron,
the post-synaptic neuron could only detect the frequency but
not the waveform of the stimuli.

By contrast, with Vn = 800 mVpp added to the input, the FS
neuron exhibits dramatically different responses, as shown in
Fig. 9. Although the sinusoidal or square waveform is masked
off by the large noise, the ISIs are modulated in accordance
with the waveforms. From a prolonged recording of 20 s
for each stimulus, Fig. 10 plots the statistical distributions
of the spike timing for the two stimulating waveforms. The
histograms reconstruct the waveforms of the input stimuli,
indicating that the modulated ISIs allow post-synaptic neurons
to perceive the waveforms from spike timing. The advantage
and the utility of noise-induced stochastic behavior in neurons
is first demonstrated in VLSI. Certainly, an optimum level of
noise exists for maximizing the sensitivity, and the optimum
level is different from one case to another.

V. Conclusion

This brief demonstrated the feasibility of simulating various
stochastic neurons in VLSI by simply injecting noise into
the membrane capacitor of a HH model in VLSI. Various
stochastic behaviors observed in biological neurons have been
reproduced in VLSI realistically. The effect of noise on
different neurons has thus been studied efficiently. These
promising results point toward the development of analog
VLSI systems able to simulate stochastic neuronal networks
in real or accelerated time. The influence of noise on synaptic
connections and network behaviors will then be explored. In
addition, hybrid silicon-neuron networks could be built to ease
the investigation on how individual parameters affect stochas-
tic neural computation, as well as to verify the suggestions
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drawn from computer-based simulations. The understanding
on how neurons compute with noise reliably would further
inspire novel neuromorphic computation. For example, as
the intrinsic noise of transistors will become nonnegligible
in the deep-submicrometer era, it will be interesting to explore
the possibility of using the intrinsic VLSI noise for computa-
tion like biological neurons do.

Acknowledgment

The authors would like to thank the IMS Lab, University
of Bordeaux, Talence, France, for providing the lab facility.

References

[1] J. M. Casado, “Synchronization of two Hodgkin–Huxley neurons due
to internal noise,” Phys. Lett. A, vol. 310, nos. 5–6, pp. 400–406, 2003.

[2] P. Chadderton, T. W. Margrie, and M. Hausser, “Intergration of quanta
in cerebellar granule cell during sensory processing,” Nature, vol. 428,
no. 6985, pp. 856–860, 2004.

[3] L. O. Chua, T. Roska, T. Kozek, and A. Zarandy, “CNN universal chips
crank up the computing power,” IEEE Circuits Devices Mag., vol. 12,
no. 4, pp. 18–28, Jul. 1996.

[4] J. J. Collins, C. C. Chow, and T. T. Imhoff, “Stochastic resonance without
tuning,” Nature, vol. 376, no. 6537, pp. 236–238, 1995.

[5] E. D’Angelo, G. De Filippi, P. Rossi, and V. Taglietti, “Ionic mecha-
nism of electroresponsiveness in cerebellar granule cells implicates the
action of a persistent sodium current,” J. Neurophysiol., vol. 80, no. 2,
pp. 493–503, 1998.

[6] A. Destexhe, Z. F. Mainen, and T. J. Sejnowski, “Kinetic models of
synaptic transmission,” in Methods in Neuronal Modeling, C. Koch and
I. Segev, Eds. Cambridge, MA: MIT Press, 1998.

[7] G. B. Ermentrout, R. F. Galán, and N. N. Urban, “Reliability, synchrony
and noise,” Trends Neurosci., vol. 31, no. 8, pp. 428–434, 2008.

[8] E. Farquhar and P. Hasler, “A bio-physically inspired silicon neuron,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 3, pp. 477–488,
Mar. 2005.

[9] R. F. Fox, “Stochastic versions of the Hodgkin–Huxley equations,”
Biophys. J., vol. 72, no. 5, pp. 2068–2074, 1997.

[10] W. Gerstner and W. M. Kistler, Spiking Neuron Models. Cambridge,
U.K.: Cambridge University Press, 2002.

[11] C. Hammond, H. Bergman, P. Brown, “Pathological synchronization
in Parkinson’s Disease: Networks, models, and treatments,” Trends
Neurosci., vol. 30, no. 7, pp. 357–364, Jul. 2007.

[12] A. L. Hodgkin and F. Huxley, “A quantitative description of membrance
current and its application to conductance and excitation in nerve,” J.
Physiol., vol. 117, no. 4, pp. 500–544, 1952.

[13] E. M. Izhikevich, “Which model to use for cortical spiking neurons?”
IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, Feb. 2004.

[14] C. Koch, “Beyond Hodgkin and Huxley: Calcium and calcium-
dependent potassium currents,” in Biophysics of Computation, C. Koch,
Ed. New York: Oxford University Press, 1999.

[15] G. Le Masson, S. Le Masson, D. Debay, and T. Bal, “Feedback inhibition
controls spike transfer in hybrid thalamic circuits,” Nature, vol. 417,
no. 6891, pp. 854–858, 2002.

[16] W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget, “Bayesian inference
with probabilistic population codes,” Nat. Neurosci., vol. 9, no. 11,
pp. 1432–1438, 2006.

[17] C. Pecher, “La fluctuation d’excitabilité de la fibre nerveuse,” Arch. Int.
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Constructive Approximation to Multivariate Function by
Decay RBF Neural Network

Muzhou Hou and Xuli Han

Abstract—It is well known that single hidden layer feedforward
networks with radial basis function (RBF) kernels are universal
approximators when all the parameters of the networks are
obtained through all kinds of algorithms. However, as observed in
most neural network implementations, tuning all the parameters
of the network may cause learning complicated, poor general-
ization, overtraining and unstable. Unlike conventional neural
network theories, this brief gives a constructive proof for the fact
that a decay RBF neural network with n + 1 hidden neurons can
interpolate n + 1 multivariate samples with zero error. Then we
prove that the given decay RBFs can uniformly approximate any
continuous multivariate functions with arbitrary precision with-
out training. The faster convergence and better generalization
performance than conventional RBF algorithm, BP algorithm,
extreme learning machine and support vector machines are
shown by means of two numerical experiments.

Index Terms—Constructive neural networks, decay radial
basis function (RBF) neural networks, interpolation, uniformly
approximation.

I. Introduction

THE WIDESPREAD popularity of neural networks in
many fields is mainly due to their ability to approximate

complex multivariate nonlinear functions directly from the
input samples. Neural networks can provide models for a large
class of natural and artificial phenomena that are difficult to
handle using classical parametric techniques.
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