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Abstract: The authors introduce a continuous stochastic generative model that can model 
continuous data, with a simple and reliable training algorithm. The architecture is a continuous 
restricted Boltzmann machine, with one step of Gibbs sampling, to minimise contrastive 
divergence, replacing a time-consuming relaxation search. With a small approximation, the 
training algorithm requires only addition and multiplication and is thus computationally inexpen- 
sive in both software and hardware. The capabilities of the model are demonstrated and explored 
with both artificial and real data. 

1 Introduction 

Probabilistic generative models offer flexible data model- 
ling, wherein stochasticity both represents the natural 
variability of real data and drives a search of solution 
space during training. Our primary interest is in proces- 
sing and modelling continuous data close to a sensor 
interface. It is therefore important that such models are 
amenable to, or at least not resistant to, analogue or 
mixed-mode VLSI implementation. The product of 
experts (PoE) [ l ]  has been shown to be a flexible 
architecture and ‘minimising contrastive divergence’ 
(MCD) can underpin a simple training rule [2]. The 
restricted Boltzmann machine (RBM) [3] with an MCD 
rule has been shown to be amenable to further simplifica- 
tion and use with real, continuous data [4]. However, the 
binary RBM is not ideally suited to modelling continuous 
data, even with pragmatic modifications made to the data 
representation [2, 41. The probabilistic units are binary- 
stochastic and approximations must be made to encode 
continuous data. In the rate-coded RBM (RBMrate) 
[ 5 ] ,  stochastic units can adopt intermediate discrete 
values, and thus have greater modelling flexibility. How- 
ever, repeated, uncorrelated sampling is awkward in both 
hardware and software. The diffusion network (DN) [6] 
with symmetric connections can be shown to be a 
continuous Boltzmann machine. We introduce a form of 
continuous restricted Boltzmann machine (CRBM) [7], by 
applying the MCD rule to a constrained diffusion 
network. We also develop a simplification of the rule 
that renders it more amenable to implementation. With 
continuous-valued stochastic units, the CRBM offers 
improved modelling ability with both artificial and real 
(in our example, ECG) continuous data. 

0 IEE, 2003 
IEE Proceedings online no. 20030362 
DOI: 10.1049/ip-vis:20030362 
Paper first received 10th April and in revised form 5th December 2002 
The authors are with the School of Engineering and Electronics, University 
of Edinburgh, Mayfield Rd., Edinburgh EH9 3JL, UK 

IEE Proc.-Vis. Iniuge Signul Process., Vol. 150, No. 3, June 2003 

2 Binary and discrete restricted Boltzmann 
machine 

The RBM has one hidden and one visible layer with 
only interlayer connections [3]. Fig. 1 shows an RBM 
with two visible units, four hidden units and two 
(permanently-on) bias units vo and ho.  The visible and 
hidden units have binary states {0, I }  and are connected 
by weight matrix {w}. Let vi and hj represent the states 
of visible unit i and hidden unit j ,  respectively, and 
wii = wji the bidirectional weights. The state probabilities 
of the units are 

phi =p(+ = 1) = 
I 

1 + exp(-Ci wiivi) 

As no intralayer connections exist, units within a layer 
are conditionally independent and can also be updated in 
parallel. The MCD training rule for an RBM replaces 
the computationally expensive relaxation search of the 
Boltzmann machine [SI with a single step of Gibbs 
sampling [2]. In MCD training, a training datum is 
first presented to the visible units to produce {vi}. The 
binary hidden states ( h j }  are then sampled according to 
probabilities in (I) .  Repeating this process once more to 
update the visible and then the hidden units produces 

Fig. 1 
hidden units 

Diagram of an RBM with two visible units and four 
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one-step ‘reconstructed’ states {01} and { h j } .  The MCD 
update equation for wii is 

Aw, = ~ ( ( v j h j )  - (Gjh;)) 

where (.) refers to the mean over the training data. 
Following Hinton in [2], the RBM is able to model grey- 

level handwritten digits [2] and continuous data [4], if the 
probabilities in (1) of visible units are treated as approx- 
imations to the continuous values, and the probabilities p y z  
and PA] are substituted for v, and hJ in (2). However, the 
RBM with binary hidden units tends to generate conti- 
nuous data with high symmetry. For example, if an RBM 
with two hidden units is trained to generate data in a 
training set, only hidden states ( h l ,  h2)=(0, 0), (0, l), 
( 1 ,  0) and (1, 1) can occur. As a consequence, even if 
training data only exist in the regions modelled by (0, 0), 
(0, 1) and (1, 0), data will be generated in the area 
modelled by (1, I) ,  albeit with lower probability. The 
limitation above has been made clear experimentally in 171. 

The ‘rate-coded RBM’ (RBMrate) [5] alleviates this 
limitation by estimating the ‘firing rate’ of a binary- 
stochastic unit. This estimate is achieved by sampling 
the unit’s state m times, representing continuous values 
by the number of active samples. The states {v,) {hJ)  of 
RBMrate units thus have discrete values of { 1,2,3, .  . . , m } ,  
but. the simple training algorithm of (2) is preserved 
without loss of rigour. RBMrate offers an improved ability 
to model continuous image data [5], but the repetitive 
sampling of RBMrate is inconvenient and will exacerbate 
noise in the power supplies of a VLSI implementation, 
placing the circuits in danger of synchronisation [9]. We 
have therefore chosen Movellan’s method in a diffusion 
network [6] to introduce equivalent stochastic behaviour. 

3 Continuous restricted Boltzmann 
machine (CRBM) 

3. I Continuous stochastic unit 
The repeated sampling procedure in RBMrate creates input 
noise, giving rise to a discrete-valued output with a 
binomial distribution. Following this lead, we introduce a 
continuous stochastic unit by adding a zero-mean Gaussian 
noise to the input of a sampled sigmoid unit. Let si be the 
output of neuron j ,  with inputs from neurons with states 
{s,}. (From Section 3, si represents v, for a visible neuron, 
and h, for a hidden neuron.) 

with 

(3) 

where N,(O, 1) represents a Gaussian random variable with 
zero mean and unit variance. The constant 0 and ”(0, 1) 
thus constitute a noise input component nj = 0 N,(O, 1) 
according to a probability distribution 

(5) 

cp,(x) is a sigmoid function with asymptotes at tIL and OH. 
Parameter ai controls the slope of the sigmoid function, and 
thus the nature and extent of the unit’s stochastic behaviour 
[7]. Such behaviour is similar to the noisy unit in [IO], 
where the variance of the added noise is tuned. Replacing 
the binary stochastic unit in RBM by this continuous form 
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of stochastic unit leads to a continuous RBM (CRBM), 
within which ai is a ‘noise-control’ parameter, allowing a 
smooth transition from noise-free, deterministic behaviour 
(small a,) to binary-stochastic behaviour (large a,). 

3.2 CRBM and diffusion network 
A diffusion network (DN) consists of n fully-connected 
units with activation {xj(t)}, connected by n x n real- 
valued weights @! The diffusion network (DN) [6, 111 
exhibits continuous probabilistic behaviour, driven by a 
stochastic differential ‘diffusion equation’ for the time- 
evolution of the state xi 

&;(t) = K; ~ j j ~ ; ( x i ( t ) )  - p;xj(t) . dt + 0 . dBj(t) (6) 
( i  1 

where l / ~ ~  and l/pj represent, in model terms, the input 
capacitance and resistance of neuron j .  In terms of a discre- 
tised state update process, K, controls the changing rate of 
state x,(t) and pi is a state-decay term. dB’{t) introduces a 
Brownian motion term [l  11 that provides an additional 
random element in the network’s behaviour. The increment, 
B]{t + dt) - B,(t), for such Brownian motion is thus a Gaussian 
random variable with zero mean and variance dt [ll]. The 
discrete-time diffusion process for a finite time increment At is 

x,(t + At) = x,(t) + ‘c; wiicpj(xj(t))At 
I 

- ~,p;x,(t)At + ozj(t)& (7) 

where zj(t) is a Gaussian random variable with zero mean 
and unit variance. If At = 1/?,pj, the terms in x,(t) cancel 
and writing a d ( A t )  = o‘, this becomes 

x,(t + Alt) = K; wj,cpj(xi(t))At + c’zj(t) (8) 
I 

If W is symmetric and is a constant over the network, the 
right hand side of (8) is equivalent to the total input of a 
CRBM as given by (3). As si = q,(xj), the CRBM is simply a 
symmetrical restricted diffusion network. Thus, although the 
CRBM is a highly constrained diffusion network, the weight- 
update algorithm of the DN is suitable for training a CRBM. 

3.3 MCD training algorithms for the CRBM 
The training rule for any parameter AJ in a DN is [6] 

A/”J = (SA,)* - (S;Jm (9) 

where (.)o and (.)m refer to the expectation values over 
the training data with visible states clamped, and in 
free-running equilibrium, respectively. Sj. is the system- 
covariate [6], which is the negative derivdive of the DN’s 
energy fbnction with respect to parameter iY. Drawing on 
the relationship between the restricted DN and the product 
of experts 1121, we simplify (9) by once again minimising 
contrastive divergence [2], avoiding the time-consuming 
process of full Gibbs’ sampling to reach equilibrium. If (.) 
is the expectation value over one-step sampled data, the 
MCD rule becomes 

A)? = (SiJ)0 - (&;)I  (10) 

for both the restricted diffusion network and CRBM. The 
energy function of CRBM is analogous to that of the 
continuous Hopfield model [ 131 
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a 

Fig. 2 Approximation of (14) 

1 
s: 

b 

1 

a Approximation of (14) over the value range of .f (=s,) and s;, (=i,) 
b Two slices at s/! = 0 (left) and s,! = -0.9 (right). Note that, owing to the difference between the real and approximate values, the black points are 
invisible over some ranges 

where q ( s )  refers to qj(s) with ai = 1. Equations (1 0) and 
(1 1) then lead to MCD training rules for both the CRBM’s 
weights { wii} and ‘noise-control’ parameters {a,}. 

AGii = y,,,((sisj) - ( i j i j ) )  (12) 

where .?, denotes, as before, the one-step sampled state of 
unitj,  and (.) in (13) refers to the mean over the training 
data. To simplify this, primarily for ease of hardware 
design, we approximate the integral term in (13) as 

q-l(s)ds c( (Sj + i j ) ( S j  - q (14) [ 
The accuracy of this approximation is illustrated in Fig. 2. 
The horizontal axes in Fig. 2a span the full ranges of s, and 
i j, the continuous surface shows the values of the real 
in t eg ra l  a n d  t h e  b l a c k  p o i n t s  i l lus t ra te  t h e  a p p r o x i m a t e  
values given by (14). Fig. 2b shows two slices of Fig. 2a at 
i, = 0 and i, = -0.9, respectively. The difference is small 
and encourages the use of the approximation in (14). From 
(14) and (1 3), the simplified training rule for ai is 

YLl AZj = - ((s2) - (22))  a; J J 

Equations (1 2) and (1 5 )  indicate that the training rules for 
CRBM require simple addition and multiplication opera- 
tions. The similarity between these two equations is strik- 
ing. Since the MCD training rule for {wii} has been 
successfully implemented and tested in VLSI [ 14, 151, the 
similarity implies that these training rules for {we} and 
{ a j }  may be implemented with the same circuit. In addi- 
tion, Alspector et al. have implemented a full Boltzmann 
machine in VLSI [ 161, providing potential solutions to all 
other component circuits a CRBM in VLSI will require. 

4 Demonstration: artificial data 

Simple, but nontrivial, two-dimensional datasets, shown in 
Fig. 3a, were generated to compare and illustrate the 
performance of RBM, RBMrate and CRBM on continuous 
(analogue) data. A typical dataset comprises two clusters of 
200 data each. An RBM with six hidden units, an RBMrate 
model with six hidden units and a CRBM with four hidden 
units were trained for 4000 epochs with y = yw = 1.5 in (2) 
and (12). The numbers of hidden units in each case were 
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chosen empirically to maximise modelling ability while 
minimising the number of free parameters. To compare the 
trained generative models, an approximate equilibrium 
reconstruction by each of the models was obtained by 
Gibbs sampling from 400 random initial data for 20 
steps. RBM’s limited ability to model asymmetric data is 
clear from Fig. 3b. Fig. 3c shows clearly that the discrete 
stochastic units in RBMrate improve the model signifi- 
cantly, although the discrete-valued nature of the recon- 
struction is revealed by the ‘graininess’ in the generated 
data. The CRBM was trained with ?la = 1, On= 1, eL = -1 
and (T = 0.2 for all units. The reconstruction by the trained 
CRBM is shown in Fig. 3d. The CRBM models the data 
well and reconstructs continuous-valued points with no 
artificial quantisation. 

Equations (1 5) and (1 2) were used to adapt the CRBM’s 
‘noise-control’ parameter {U,} and the weights {wV} in 
parallel. Figs. 4a and b show the evolution of the {a,} for 
the visible and hidden units during training. These traces 

-1 1 -1 
a b 

1,  

-1 - 
-1 1 

C 
-1 

d 

Fig. 3 ArtiJicially generated continuous training data and recon- 
struction from 400 random input by trained models @er 20 steps 
of Gibbs sampling 
a Artificially generated continuous training data 
b Reconstruction using RBM 
c Reconstruction using RBMrate 
d Reconstruction using CRBM 
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Fig. 4 
hidden units during CRBM training 
a Visible units 
b Hidden units 

Evolution of ‘noise-control’ parameter a, for visible and 

show clearly how the data model of Fig. 3d forms during 
training. aj for hidden unit 1 rises from a l  = 1 to a ,  = 3 ,  
while a2,  a3 and a4 remain ~ 1 ,  so hidden unit 1 and 
hidden units 2-4 are clearly performing different functions 
in the model. The { a j )  of the visible units display a form of 
‘autonomous annealing’ driven by (1 5) ,  gradually reducing 
the level of noise and thus the units’ tendency to be binary. 

To investigate what this behaviour means in terms of 
model formation during training, 20-step reconstructions 
by the CRBM after 50, 395, 1800 and 2700 training epochs 
are shown in Fig. 5.  The broken vertical lines in Fig. 4 
highlight the corresponding values of {a j} :  Very early in 
training, the {a j }  for all of the visible layer rises abruptly to 
form near-binary units, allowing a wide ‘search’ of the 
solution space to find crude binary-model approximations 
to the input data clusters, as illustrated by Fig. 5a. This 
model is similar to the binary RBM model in Fig. 3b. The 
{a,} of visible units peak at epoch 395. Fig. 56 reveals that 
the large value of { a j }  compresses the reconstruction and 
inhibits the adaptation of the weights {wi j } .  The {a j}  of 
visible units subsequently decreases, allowing more flex- 
ible adaptation of the { wii}. As training progresses further, 
the {a j}  of visible units continues to fall, enabling the 
CRBM to model continuous data with more deterministic 
visible units. During this adaptation process, a2 in the 
hidden layer rises, causing its unit to become a near-binary 
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Fig. 5 
U After 50 training epochs 
b After 395 training epochs 
c After 1800 training epochs 
d After 2700 training epochs 

20-step Gibbs sampled reconstructions by the CRBM 

‘decision-maker’ and allowing the two distinct clusters to 
be modelled clearly, as illustrated by the reconstruction in 
Figs. 5c and 5d. The other hidden units encode the 
variances of the clusters in different directions with smaller 
values of {a,}. By epoch 2700, the values of {a j}  in both 
hidden and visible units have essentially settled and the 
CRBM models the data distribution well, as shown in 
Fig. 5d. The weight parameters {wi j } ,  though not shown, 
also settle after epoch 2700, indicating that the training 
reaches equilibrium. The CRBM finally reconstructs data 
successfully at epoch 4000, as shown in Fig. 3d. The results 
above indicate that the training equation (15) leads to 
intriguing and encouraging training behaviour in this 
stylised, but nontrivial example. 

5 Demonstration: real heartbeat (ECG) data 

To highlight the improved modelling richness of the 
CRBM and to give these results credence, the CRBM 
was trained to model the ECG data used in [4] and [17]. 
Training and test datasets, of 500 and 1700 heart- 
beats, respectively, were extracted from a 30-minute ECG 
trace. Each heartbeat consists of 65 sampled values with 
amplitudes normalised into the range [-1, 11. The 500 
training data contain six ventricular ectopic beats (VEBs) 
and the 1700 test data contain 27 VEBs. 

A CRBM with four hidden units was trained for 4000 
epochs with qw = 1.5, qL( = 1 ,  O H =  1, eL = - 1 ,  cr = 0.2 for 
visible units and U = 0.5 for hidden units. Fig. 6 shows the 
20-step reconstruction by the trained CRBM with input of 
a normal QRS complex (Fig. 6a), typical of ~ 9 9 %  of the 
training data (The letters QRS refer to the different points 
in a heartbeat cycle when the heart is actually pumping 
current [17]) a typical VEB (Fig. 6b). The CRBM 
modelled both forms of heartbeat successfully, although 
VEBs represent only 1% of the training data. Following 
[4], Fig. 6c shows the receptive fields of the hidden bias 
unit and the four hidden units. The bias unit codes an 
‘average’ normal QRS complex, and H3 adds amplitude 
and detailed structure to the P- and T-waves. H1 and H2 
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Fig. 6 
a Reconstruction from input of normal QRS complex 
6 Reconstruction from input of typical VEB 
c Receptive fields of the hidden bias and the four hidden units HlLH4 

Reconstruction by the trained CRBM with four hidden units and the receptivejields of the hidden bias and thefour hidden units 

drive a small horizontal shift and a magnitude variation of 
the QRS complex. Finally, H4 encodes the significant dip 
found in a VEB. A CRBM with only two hidden units 
yielded similar success, although the ability to model inter- 
QRS variations was reduced. This modelling richness 
compares favourably with that of an RBM with six 
hidden units [4], which merely modelled a normal QRS 
complex. 

The most principled measure of a test datum’s fit to the 
CRBM model is the log-likelihood of the particular datum 
under the trained CRBM. Low likelihood indicates a 
VEB and extremely low likelihood suggests an artefact. 
However, the likelihood calculation requires complicated 
calculations, particularly in hardware. The receptive field 
of H4 suggests a simpler, pragmatic approach. When H4 is 
active, the dip characteristic of a VEB is included in the 
model and H4’s activity should thus be an indicator of a 
VEB. In addition, parameter uJ for H4 ends with a large 
value after training, similar to that for H3 in Fig. 4b, 
transforming H4 into a binary ‘decision maker’. Therefore, 
the activities of hidden units, in particular that of H4, may 
form the basis of a simple novelty detector. The post- 
sigmoid activities of H4 corresponding to 1700 test data 
are shown in Fig. 7, with the noise source in ( 3 )  removed 
(cr = 0). The strong peaks highlight the VEBs clearly. VL 
in Fig. 7 indicates the minimum H4 activity for a VEB in 
the test data, and QH marks the maximum H4 activity 
induced by a normal QRS heartbeat. A simple linear 
classifier with a threshold between the two dashed lines 
will therefore detect the VEBs with an accuracy of 100%. 

Fig. 7 Post-sigmoid activities of H4 corresponding to I700 
test data 
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The margin for this threshold is more than 0.5, equivalent 
to 25% of the total value range. Compared to [17] where a 
64-1 6-64 autoassociative MLP was trained to model the 
same data, the best accuracy achieved was merely 99.3%. 
Wang et al. also indicates that most neural-network models 
can only distinguish VEB from normal heartbeats with an 
accuracy of no more than 97% [ 181, though various models 
were tested with various datasets. A single hidden unit’s 
activity in a CRBM is, therefore, potentially a reliable 
novelty detector and it is expected that layering a super- 
vised classifier on the CRBM, to ‘fuse’ the hidden unit 
activities, will lead to improved results. 

Constant cr in (3) controls the noise variance of the 
continuous stochastic units. If the value of cr is very large 
such that the noise component dominates, the unit become 
‘binary-random’ with a probability of 50%, independent of 
the deterministic input. Note that such a binary-random 
unit is different from the binary-stochastic unit induced by 
a large value of uJ. The probability of the binary-stochastic 
unit remains dependent on the deterministic input. 
However, the units become fully deterministic if cr = 0. 
To investigate the influence of the noise variance cr2 on the 
CRBM’s performance, CRBMs with various values of cr for 
the hidden units were trained to model the same ECG data, 
and the margin allowed to detect the VEBs with 100% 
accuracy used as the indicator of the trained CRBMs’ 
performance. Fig. 8 shows the results for the CRBMs 
with two, four and eight hidden units. The maximum 
margin always occurs with an intermediate value of 0. 
The degradation of the CRBM’s performance with smaller 
cr can be attributed to ‘overfitting’ by near-deterministic 
hidden units, while the degradation with larger cr is more 
simply attributable to the domination of input noise. Fig. 8 
also reveals that increasing the number of hidden units 
does not necessarily improve the margin. A CRBM with 
eight hidden units ‘uses’ more than one hidden units to 
model the characteristics of VEBs, so the performance of a 
single hidden unit as a VEB-detector is reduced. Clearly, a 
parsimonious architecture and an optimum level of noise 
are key to the CRBM’s performance as a novelty, or rare- 
event detector. 
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Fig. 8 
Points and error bars show the means and standard deviations across 
ten experiments 

Influence o f .  on CRBMperformance 

6 Conclusions 

The CRBM is a principled approach to modelling conti- 
nuous data successfully with a simplified MCD rule. The 
architecture has been shown to be able to develop stochas- 
tic behaviour in its units, in response to training, that 
ranges from binary-stochastic to deterministic. This leads 
to a modelling flexibility that exceeds the ability of 
probabilistic models with more fixed-form (e.g. binary) 
units. This is all clear from experiments with artificial data 
designed to probe how a CRBM forms a generative model. 
Experiments with real ECG data confirm that the CRBM is 
capable of modelling complex continuous data, and we 
have also shown that the CRBM’s hidden units can under- 
pin a simple but reliable novelty detector. Component 
circuits of the RBM have been successfully implemented 
[9, 14, 1.51 and circuits for noise sources have also been 
demonstrated [ 161. Therefore, the CRBM is a potential 
continuous stochastic model for VLSI implementation and 
embedded intelligent systems. 
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