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Abstract. Sensor drift is an inevitable measurement problem and is particularly
significant in the long term. The common practice is to have an auto-calibration
facility (including standard buffers or accurate integrated actuators) mounted on
the monitoring system. However, this approach may not be feasible when the mon-
itoring system is miniaturized to the size of a capsule. In this paper, we develop
an adaptive stochastic classifier using analogue neural computation to produce
constantly-reliable classification for noisy pH-ISFET measurements. This classi-
fier operates at the signal-level fusion and auto-calibrates its parameters to com-
pensate the sensor drift, with simple learning rules. The ability of the classifier to
operate with a drift of 85 % of the pH-ISFET’s full dynamic range is demonstrated.
This sensor fusion highlights the potential of neural computation in miniaturized
multisensor analytical microsystems such as Lab-in-a-Pill (LIAP) for long-term
measurements.

1 Introduction

Driven by current Lab-on-a-Chip and System-on-Chip (SoC) technological trends, it is
now possible to shrink a complex multisensor microsystem into the size of a capsule
[1]. However, it is then inherently more difficult to extract useful information from what
is now far noisier sensor data. Our primary interest is in a simple data-fusion algorithm
that is robust to noise, hardware-amenable and thus able to underpin an intelligent sensor
fusion system (ISFS). Since sensor drift is an unavoidable problem especially in the long
term, an ISFS should be autonomous adaptive and possibly capable to classify noisy
sensory data into categories.

Our prototype capsule [1] contains standard PN-junction silicon diode temperature
sensor [2] and ion-sensitive field effect transistor (ISFET) pH sensor [3]. The ISFET
suffers from four different types of sensor drift. The type of drift, which we confront most,
is due to the instability of the reference electrode. One approach to eliminate the drift is to
use two different pH-sensitive layers (e.g. Ta2O5 and oxynitride/Si3N4) in differential
mode. However, this design suffers from crosstalk between the transistors when some
protons (by-product of enzyme reaction) diffuse to the ion-insensitive transistor and
cause a false signal. This, combined with our interest in miniaturization of the multisensor
microsystem [1], means that we choose to use a single ISFET for each pH measurement.
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In this study, we choose to employ neural computation, in particular Continuous
Restricted Boltzmann Machine (CRBM) [4], to calibrate the ISFET’s drift. The CRBM
has been shown to be a stochastic generative model that can model continuous data
with a simple training algorithm. The following sections present our investigation on the
potential of CRBM in our application - performing reliable classification of noisy data
that suffers from sensor drift.

2 Neural Computation

This section briefs the CRBM model, while detailed description should be referred to
[4]. The CRBM has one visible and one hidden layer with inter-layer connection defined
by a weight matrix {W}. A stochastic neuron j has the following form:

sj = ϕj

(∑
i

wijsi + σ ·Nj(0, 1)

)
, (1)

with ϕj(xj) = θL + (θH − θL) · 1
1 + exp(−ajxj) (2)

where si refers to input from neuron i, andNj(0, 1) represents a unit Gaussian noise with
zero mean. The noise component σ ·Nj(0, 1) allows the CRBM to perform probabilistic
analogue neural computation without quantization and hence avoid unnecessary loss of
information which a binary RBM suffers from [5,6,7]. To enhance efficient learning,
the noise scaling factor σ in visible layer is set to a constant value close to the input
data’s standard deviation, while σ in hidden layer is set to 0.4 in order to avoid over-
fitting problem [8]. Parameter aj is the noise-control factor which controls the slope
of the sigmoid function, such that a neuron j behaves deterministically (small aj), or
continuous-stochastically (moderate aj), or binary-stochastically (large aj). θH and θL
are then simply two constants defining the sigmoid function’s asymptotes.

Both {aj} and {wij} can be trained by “Minimizing Contrastive Divergence” (MCD)
learning [5]. The simplified MCD learning rule [8] requires only addition and multipli-
cation, and is therefore hardware-amenable.

3 Sensor Model

This section introduces the mathematical models of the temperature and the pH sensors.

3.1 Temperature Sensor

The signal conditioning circuit is illustrated in Fig. 1a. The output voltageVout is linearly
proportional to the environmental temperatureT . In our application [1], the sensor should
operate within a dynamic range of 0 - 70 oC with a sensitivity of 31.5 mV/oC. Results from
fabricated integrated sensors [1] show that the temperature sensor can be represented
by:

Vout(t) = 31.5× T + 1030 + τtemp(t) + atempNtemp(t) (3)
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at time t. The terms τtemp(t), atemp and Ntemp(t) refer to non-linear sensor drift func-
tion, noise magnitude and random Gaussian noise function (due to background noise of
the sensing environment). Units for Vout(t) and T are mV and oC respectively.

3.2 pH Sensor

The signal conditioning circuit is depicted in Fig. 1b. This sensor provides a dynamic
range of pH 1 - 10. Experiment [1] reveals that the ISFET has a sensitivity of 23.5 mV/pH
with 16 µA of excitation current. Thus, a first-order model for the output voltage Vout
of a particular ISFET (with an unique VT ) at time t will be:

Vout(t) = 18× T − 23.5× pH + VT + τpH(t) + aCNC(t) (4)

The term τpH(t) refers to non-linear pH sensor drift function while aC and NC(t) refer
to the composition noise magnitude and random Gaussian noise function for both tem-
perature and pH sensing variances. Units for Vout(t) and T are mV and oC respectively.
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Fig. 1. Signal conditioning circuits for the sensors

4 Experiments and Discussion

In this study, we investigate the CRBM’s ability to model the measurement signals from
one temperature sensor and ten pH-ISFET sensors. The 11-dimensional measurement
data are generated according to (3) and (4), with atemp and ac being set to 0.013 and
0.053 which correspond to their experimentally-recorded levels (20 mV and 80 mV) [1].
With θH = 1 and θL = −1, all generated data are also renormalized into ±1.

Fig. 2a shows the training data consisting of two sets of measurements. The sensors
are exposed to a pH 4 liquid in the first set (clusterA), while to a pH 10 liquid in the second
set (cluster B). Since both sets of measurement have the same ambient temperature of
37 oC, the mean values of the temperature sensor (first visible unit in Fig.2a) in both sets



Adaptive Stochastic Classifier for Noisy pH-ISFET Measurements 641

are the same. As the characteristics of the sensors are defined by the fabrication process,
the only variation between the ten ISFETs is the threshold voltage. Therefore, the two
data clusters have similar distributions (Fig. 2a).

A CRBM model (implemented in Matlab) with five hidden unit, including the bias
unit, is trained to model the two clusters of data. The noise-scaling constant σ is set
to 0.05 for visible units, in accordance with atemp and ac, and to 0.4 for the hidden
units. To test CRBM’s ability to classify noisy sensory data, both weights {wij} and
noise-control factors {aj} are updated in the first 30,000 epochs. The results of CRBM
functioning as a classifier after 30,000 epochs’ training are discussed in Sec.4.1. Sec.4.2
then examines the trained CRBM’s ability to trace any subsequent shift in training data
after 30,000 epochs, by turning ON the learning of some particular parameters. Finally,
Sec.4.3 further complicates the task by removing one cluster in the training data, and
demonstrates that the CRBM remains able to trace the shift and classify noisy data.

4.1 CRBM as a Classifier

After the initial 30,000 training epochs, the bias unit H0 in the hidden layer encodes the
underlaying shape (i.e. mean) of the training data distribution, as depicted in Fig. 2b. This
is due to its state (permanently ’+1’) which allows it to learn faster (with a larger weight
change ∆ω̂i0) than the other hidden units that have near-zero initial states. On the other
hand, the hidden unit H1 has a set of large values (∼ -0.6) of receptive field for visible
units V2-11 (Fig. 2c) and a large noise control factor ah (2.6956) relative to other hidden
units’ as shown in Fig. 3a. These point to the mechanism whereby a CRBM models two
such clusters of data. The large values imply that the activity/state of the hidden unit H1
is very sensitive to the particular elements in the input data vector. Consequently, it is
possible to classify the unknown input data into cluster A or B by simply observing the
activity of the hidden unit with large ah, in this case H1. Furthermore, we realize that the
activity of the hidden unit can be a measure of confidence for this high-level abstraction
of information. As indicated in Fig. 3b, a clear separation (lowest upper boundary -
highest lower boundary = 0.65) of H1’s response to two different clusters shows that a
100 % accuracy on classification is easily achieved.

4.2 Tracing Sensor Drift

After the initial 30,000 training epochs, sensor drift is introduced to the first pH sensor
(second visible unit V2). For simplicity, we set τtemp(t) = 0 and τpH(t) = 5 mV per
5000 epochs. If all weights ωij remain updated simultaneously as in Sec. 4.1, all ωij
will “compete” to respond to any shift in the mean of the data distribution, due to their
stochastic nature. Since the experiment in Sec. 4.1 indicates that the receptive field of
the bias unit H0 in the hidden layer describes the mean of the training data distribution,
we thus propose that only H0’s receptive field be updated with the latest distribution
after the initial 30,000 epochs.

After 230,000 epochs, the reconstruction data distribution, as depicted in Fig. 4b,
has a notable shift of 0.2 units approximately in the V2 axis from the reconstructed data
at epoch 30,000 (Fig. 4a). This shift coincides with the controlled shift of 0.2 unit in
the training data. Further evidence is shown in Fig. 4c where the receptive field of the
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Fig. 2. (a) The mean values for the two clusters training data in the initial 30,000 epochs. (b) - (f)
The receptive field values for all the hidden units H0-4 respectively after its initial training period
30,000 epochs
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Fig. 3. (a) The noise control factor for hidden units over the entire experimental period. (b) The
activities for the hidden unit H1 for a set of 400 training data points for both clusters A and B after
its initial training period 30,000 epochs

bias unit in the hidden layer for visible unit V2 has been adjusted by 0.4752 unit to
”trace” the change in the input data whilst the other ωij remain almost unchanged. This
result consolidates the argument that a learning CRBM, under a useful and constrained
configuration, can adapt to environmental changes such as sensor drift whilst present an
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unchanging (autonomously re-calibrated) representation of drifting data to subsequent
layers of processing - at least in this relatively simple real example.
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Fig. 4. (a) Reconstruction data distribution for the first two visible units after 30,000 epochs. (b)
Reconstruction data distribution for the first two visible units after 230,000 epochs. (c) Receptive
fields for the bias unit H0 in the hidden layer at 30,000 and 230,000 epochs

4.3 Single Cluster Updating

When a microsystem is monitoring on its surrounding environmental parameters, often
there is only a single class of data available over a long period of time. This may cause a
serious problem for a learning system such as above because of catastrophic interference.
When new data distribution (a single cluster) is presented, the system tends to adopt a
new set of parameters to re-generate the new distribution, and consequently lose its
ability to classify.

To investigate the CRBM’s ability to learn an incomplete training data without losing
classifying ability, cluster B in training data is removed after epoch 30,000, and the
same drift as in Sec. 4.2 is introduced to the remaining training cluster A. As predicted,
despite the effort of inhibiting the learning for all (except bias unit) weights, the CRBM
parameters are adjusted to re-generate only one cluster of data. We found that this is due
to a strong “compensation” from the noise-control factor aj . We therefore repeated the
experiment with learning in aj switched OFF after the initial 30,000 epochs.

Fig. 5a shows promisingly that the CRBM is still able to re-generate two clusters at
epoch 230,000 despite the current training data has only single drifting cluster of data
for updating its parameters. Besides, a notable shift in the V2-axis is learnt. Further
evidence is given in Fig. 5b whereby the receptive field of bias unit H0 in hidden layer
has a large change (0.4651) for V2 and very small adjustment (less than 0.0199) for the
rest. This is encouraging and reinforces the potential of this form neural computation
in dealing with noisy and drifting integrated-sensor data. One example of its possible
application will be a location indicator for a capsule that monitors the gastrointestinal
(GI) tract [9].
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Fig. 5. Experiment on using a single cluster to update a CRBM’s parameters. (a) Reconstruction
data for the first two visible units after 230,000 epochs. (b) Receptive fields for the bias unit H0
in the hidden layer at 30,000 and 230,000 epochs

5 Conclusion

The stochastic neural algorithm CRBM shows its ability to learn the 11-dimensional
probabilistic distribution of the analogue sensor data with merely 5 hidden units. Addi-
tionally, we have demonstrated its ability to classify noisy data with reasonable confi-
dence. With proper configuration, this classifier is further capable to counteract at least
simple sensor drift to improve its reliability, by “auto-calibrating” key parameters in-
stead of re-learning a new set of receptive fields for every newly-drifted data distribution.
Finally, we demonstrated that a CRBM is able to adapt to sensor drift despite the training
data is incomplete. Therefore, we anticipate that neural computation such as CRBM can
find a niche in the increasingly complicated distributed multisensor systems as a form
of intelligent sensor fusion.
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