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Abstract: This chapter introduces the Continuous Restricted Boltzmann Machine, a 
probabil istic neural algorithm which is both useful in modelling continuous 
data and amenable to VLSI implementation. The capabiliti es of the model are 
explored with both artificial and real data. The computing units (neurons) and 
the unsupervised training rule have been implemented in VLSI. These results 
demonstrate the feasibil ity of a full VLSI model that uses continuous 
probabil istic behaviour to model the noise associated with all real signals, and 
therefore acts as a robust classifier or novelty detector. 
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1. INTRODUCTION 

As interests in implantable systems and hybrid bio-electrical systems 
grow, sensors and electronic circuits are exposed to noisy environments that 
introduce not only serious sensory drifts but also non-negligible electronic 
noise. An intelligent system able to preprocess such noisy and drifting data 
at the sensory or bio-electrical interface is thus of great importance. By 
“ intell igence” , we mean the ability to classify or detect novelty in noisy data. 
Deterministic neural architectures (e.g. the Multi-Layer-Perceptron), though 
proven to be useful as classifiers, requires supervised, on-line calibration to 
deal with noisy and drifting data. In addition, the accurate arithmetic 
required by deterministic neural computation becomes infeasible in 
hardware as the signal-to-noise ratio greatly degrades in noisy environments.  

Probabilistic neural computation offers a more flexible route to improved 
data modelling, utilising stochasticity to model the natural variabili ty of real 
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data. The principle of probabil istic neural computation is that the input of a 
computing unit (called neuron hereafter) merely decides the probability of 
the neuron’s output. The probabil istic neurons are therefore less sensitive to 
the noise or computational errors at their inputs, rendering probabilistic 
neural computation a potential candidate for underpinning an embedded 
intelligent and real system. 

However, probabili stic models have not yet been shown to be both useful 
and hardware-amenable. The continuous-valued nature of most real-world 
signals further restricts the choice of models. Though precise computation of 
conditional probability and reliable Bayesian rules have been demonstrated 
in VLSI implementation in [1][2][3], precise computation is vulnerable to 
both intrinsic electronic noise and environmental interferences. The VLSI 
implementation of Bayesian rules is thus not suitable for underpinning an 
intelligent system exposed to noisy environments. Progress in stochastic 
arithmetic computation [4][5][6][7] suggests that coding continuous values 
into probabil istic digital pulses may reduce vulnerability to noise. However, 
the probabili stic-pulse scheme is linked to a fully-digital VLSI 
implementation which is both power- and area- consuming. It is therefore 
not ideal for an intell igent embedded system, where power and area are 
critical. 

This chapter introduces a continuous-valued probabilistic model, the 
Continuous Restricted Boltzmann Machine (CRBM) [8], capable of 
modelling analogue (continuous-valued) data with a simple and 
unsupervised training algorithm. The Boltzmann Machine [9] is a 
probabilistic model consisting of binary stochastic neurons. The CRBM, 
though a descendant of the Boltzmann Machine, comprises continuous 
stochastic neurons. They are analogous to the neurons in the Diffusion 
Network [10], but have limited interconnect [11]. As a result, the CRBM 
shows greater abil ity to model analogue data than does the Boltzmann 
Machine or the Restricted Boltzmann Machine [8], while the training of the 
CRBM can be accomplished with only one step of Gibbs sampling, unlike 
the Boltzmann Machine or the Diffusion Network [9][10]. With a suitable 
approximation, the training algorithm also requires only subtraction and 
multiplication. It is thus computationally inexpensive in both software and 
hardware. 

The capabili ties of the CRBM are demonstrated with both artificial and 
real analogue data [8], as detailed in the following sections. The analogue 
VLSI implementation of the CRBM [12] is presented and discussed. As the 
stochastic behaviour of the CRBM is driven by noise injection to its neurons, 
the CRBM learns to adapt its “ internal noise” to model the variabili ty in the 
external environments, i.e. the “external noise” . The full CRBM in VLSI is 
therefore a potential candidate for intelligent embedded system. 
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2. CONTINUOUS RESTRICTED BOLTZMANN 

MACHINE 

The Continuous Restricted Boltzmann Machine consists of continuous-
valued stochastic neurons. Let si represent the state of neuron i, and wij the 
connection between neuron i and neuron j. The stochastic behaviour of the 
neuron i is described as 

��������� �����	�
���
�����

�������
� ��� ���

���
����

������
�� 
!""#$ ��� %

&&&'
('

                 (1) 

where Ni(0,1) represents a sample of Gaussian noise with zero mean and unit 
variance, σ represents a noise-scaling constant, and ϕi(⋅) denotes the sigmoid 
function with asymptotes at θH and θL. Parameter ai controls the slope of 
sigmoid function and consequently the output probability distribution of the 
neuron i [13], as shown in Fig.1. A large value for ai leads to a sharp sigmoid 
function resulting in a binary stochastic neuron. A small ai renders the 
neuron’s input noise negligible and leads to a near-deterministic neuron. 
When ai has an intermediate value such that the noise variation is 
comparable to the width of the linear region of the sigmoid function, the 
neuron i becomes continuous stochastic. Its output distribution then 
approximates a Gaussian with mean ∑jwijsj and variance σ2. Adapting ai 
effectively adapts the influence of the input noise on the output distribution, 
so we refer to ai as the “noise-control parameter” . 

The CRBM is obtained by connecting the continuous stochastic neurons 
into a restricted form, as shown in Fig.2. Each circle in Fig.2 represents one 
stochastic neuron, and the neurons are grouped into two layers, one visible 
and one hidden layers. The black circles represent the bias neurons, whose 
outputs are permanently “on” . The inter-layer connections of the neurons are  
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Figure #-1. The output distribution of a continuous stochastic neuron can vary from (a)binary 
stochastic, to (b) continuous stochastic, and to (c)near-deterministic. 
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Figure #-2. The diagram of stochastic neurons connected in a restricted form. 

symmetric (wij = wji). The visible neurons are the interface between the 
CRBM and its environment. The number of visible neurons thus normally 
corresponds to the number of dimensions of the environment or the data the 
CRBM must model. Hidden neurons function as individual “ experts” , each 
of which represents a particular part of the overall model defined by the 
connections between one hidden neuron and all visible neurons (ex. wh1 in 
Fig.2). Therefore, a particular hidden neuron responds more to specific 
inputs when their combination state aligns with part of the model associated 
with that hidden neuron. This advantageous feature is especially useful when 
the model is employed as a classifier. Classifying unknown data can then be 
achieved by observing the response of the hidden neurons, as demonstrated 
in [8]. 

The CRBM is a stochastic generative model that learns to reconstruct 
data points with the same probabil ity distribution as the training data. The 
training rules of the CRBM are derived by minimising the “ contrastive 
divergence” between the training data and the one-step Gibbs sampled data 
[14][8]. During training, each training datum v is clamped to the visible 
neurons such that the output probabilities of the hidden neurons are 
conditionally independent. The states of the hidden neurons h are then 
sampled. The same procedure is repeated so the visible and hidden neurons 
are sampled once more. The new visible states � �  are derived from h and the 
corresponding new states of the hidden neurons 

�
 re-sampled. � �  and �  are 

called one-step Gibbs sampled states. The parameters of the CRBM are 
updated according to the following equation [8]. � �
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where vi and hj refer to the states of visible neuron i and hidden neuron j, 
respectively, and si represents both vi and hi. The constants ηw and ηa define 
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the training rates of wij and ai, respectively, and the bracket 〈⋅〉 in Eq.(2) 
denotes the expectation value over all training data. Eq.(2) shows that the 
training rules of the CRBM mainly comprise multiplications and 
subtractions. Implementing the CRBM is therefore inexpensive in both 
software and hardware. 

3. TRAINING ARTIFICIAL AND REAL DATA 

Simple, but non-trivial, two-dimensional datasets, shown in Fig.3a, were 
generated to demonstrate the CRBM’s ability to model analogue data. The 
training data in Fig.3a comprise two clusters of 200 data points, resembling 
the measurements of two sensors exposed to two different noisy 
environments. A CRBM with two visible neurons and four hidden neurons 
was trained to model this artif icially-generated data, with ηw = 1.5, ηa = 1, 
θH = –θL = 1, and σ = 0.2 for all neurons. Note that the number of hidden 
neurons was chosen empirically to optimise modell ing abil i ty [8]. After 4000 
training epochs, the CRBM reconstructed the data points as depicted in 
Fig.3b. This near-equil ibrium reconstruction was obtained by initially setting 
the visible states to random values, and then Gibbs sampling hidden and 
visible neurons alternatively for 20 steps. The reconstructed points have 
approximately the same distribution as the training data, indicating that the 
CRBM modelled the training data successfully. 

Fig.4 shows the evolution of the noise-control parameter { ai} during 
training, revealing that the CRBM adapts not only its weights but also its 
“ internal noise” to model the variabili ty in the training data. Very early in 
the training, the { ai} of the visible neurons rises abruptly to form near-
binary stochastic neurons. At this stage, the CRBM effectively explores the 
gross structure of the training data. The { ai} of the visible neurons then 
gradually decreases to reduce the noise level of the visible neurons, such that 
the CRBM is able to capture the detailed distribution of the training data in  
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(a)                                                     (b) 

Figure #-3. (a) The artificially-generated two-dimensional training data (b) the reconstruction 
by the trained CRBM from 400 randomly-distributed data after 20 steps of Gibbs sampling 
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                                      (a)                                                                  (b) 

Figure #-4. The evolution of the "noise-control" parameter { ai} of (a)visible neurons 
(b)hidden neurons during training 

its { wij} . The { ai} of the hidden neurons in Fig.4b, on the other hand, reveals 
the formation of a “decision maker” . The ai of the hidden neuron H3 rises to 
a large value (≈ 3) by the end of the training, while the { ai} of the other 
hidden neurons remained around 1. The hidden neuron H3 has therefore 
become a near-binary stochastic neuron. Its output is likely to indicate which 
cluster the datum presented to visible neurons belongs to. 

To highlight the modelling richness of the CRBM and to demonstrate its 
ability to classify real data [8], we have trained a CRBM with four hidden 
neurons to model the ECG data used in [15] and [16]. After training, the 
CRBM was able to reconstruct both normal heartbeats and ventricular 
ectopic beats (VEBs) (Fig.5), despite the fact that the VEBs represent merely 
1% of training data. Furthermore, one hidden neuron became near-binary 
stochastic after training, as did the hidden neuron H3 in Fig.4b. This hidden 
neuron was thus used to indicate the presence of VEBs in the testing data, as 
depicted in Fig.6. The strong peaks in Fig.6 highlight the VEBs clearly. VL 
marks the minimum output corresponding to a VEB and QH marks the 
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      (a)                                                                         (b) 

Figure #-5. The ECG traces, of (a) normal heartbeats (b) ectopic beats, sampled from training 
data (solid line) and reconstructed by the trained CRBM (dashed line) after 20 steps of Gibbs 
sampling from initially-random input. 
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Figure #-6. The output of the decision-maker hidden neuron in response to 1700 testing data. 

maximum output corresponding to a normal heartbeat. A simple linear 
classifier with threshold between the two dashed lines will detect VEBs with 
an accuracy of 100%. Compared to [16] where a 64-16-64 MLP was trained 
to model the same data, the best accuracy achieved was only 99.3%. The 
CRBM is therefore a reliable classifier, and it is expected that layering a 
supervised classifier on the CRBM, to “ fuse” the output activities of hidden 
neurons, wil l lead to improved results. 

4. SIMPLIFICATION FOR HARDWARE 
IMPLEMENTATION 

The training rules in Eq.(2) can be simplified to further facilitate their 
hardware implementation. Updating the parameters by variable-size steps is 
more demanding than is a fixed-size step. We therefore chose to take only 
the sign of the contrastive divergence [15]. The bracket 〈⋅〉 in Eq.(2) denotes 
the expectation value over all the training data. However, accumulating and 
retaining all these values is very impractical and area costly. We therefore 
approximate the expectation value by the average of only four training data 
as opposed to that of all training data. The simplified training rules are 
written as; � �
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where si and sj represent the state of neuron i and j. Note that the 
denominator 1/ai

2 in Eq.(2) is also absorbed and 〈⋅〉4 indicates the average 
over four training data. 

To validate the simplifications made, a CRBM with four hidden neurons 
was trained with Eq.(3) to model the artificially-generated training data 
previously used in Sec.3. The number of training data was reduced to 20, as  
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  (a)                                                       (b)  

Figure #-7. (a)20 artificially-generated training data (b) 200 data points reconstructed by the 
CRBM after 20 steps of Gibbs sampling 

shown in Fig.7a, in order to simplify the hardware testing. Fig.7b shows the 
data points reconstructed by the CRBM after 30,000 training epochs with ηw 
= 1.5, ηa = 15 for the visible neurons and ηa = 1 for hidden neurons. Fig.7b 
reveals that the CRBM was still able to capture the correct distribution of the 
training data. Therefore, the simplifications of the training rules made in 
Eq.(3) reduce the hardware complexity at the only cost of a slightly slower 
convergence time, with this set of data. 

5. A NOISY NEURON IN VLSI 

Fig.8 shows the circuit diagram of a noisy neuron. The outputs of the 
wide-range four-quadrant multipliers [12] are summed up into a current 
representing Σjwijsj, while the differential pair, Mna and Mnb, transforms the 
noise voltage vni into a noise current ini = gm (vni-Vnr). The voltage Vsigma then 
controls the transconductance gm, scaling the noise current as σ in Eq.(1). 
The I-V converter, composed of an operational amplifier and a voltage-
controlled active resistor, subsequently feeds its output to the sigmoid 
function. The exponential nonlinearity of the sigmoid function is achieved  
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Figure #-8. The circuit diagram of a noisy neuron 
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by operating the PMOS differential pair, Mbp1 and Mbp2, in the lateral 
bipolar mode [17], resulting in a differential output current as following. 
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where � !"
 denotes the sigmoid function ϕ (⋅) with θH = –θL = 1, and 

Vt=kT/q is the thermal voltage. The resistor RL finally converts io into the 
voltage vo=ioRL+Vsr. Eq.(4) indicates that Vai controls the feedback resistance 
of the I-V converter, and consequently adapts the nonlinearity of the sigmoid 
function as ai in Eq.(1). The measured DC characteristics of the fourquadrant 
multiplier and the sigmoid function, corresponding to various Vai, are shown 
in Fig.9. To ensure the normal operation of the voltage-controlled resistor, 
the voltage Vai are limited to [1, 3]V [12]. 

The noise generator is implemented by Linear Feedback Shift Register 
(LFSR) [18].Fig.10a shows the measured amplitude distribution of one  
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Figure #-9. The measured DC characteristics of (a) a wide-range four-quadrant multiplier and 
(b) a sigmoid function with variable nonlinearity. 
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Figure #-10. The measured (a) amplitude distribution of noise signal and (b) the output of a 
noisy neuron with the injection of the signal in (a). 
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channel of the LFSR noise generator. The distribution approximates a 
Gaussian distribution. The maximum amplitude of the noise input vni is 
scaled to 0.4V and injected into the noisy neuron. Fig.10b shows the 
measured output of the noisy neuron with { si} sweeping between 1.5 and 
3.5V, { wij} = 4V, and Vai=1.8V. Such { si} and { wij} forces the neuron’s 
output to sweep a sigmoid-shaped curve as Fig.9b, while the noise injection 
disturbs the curve to give a continuous-valued probabilistic output. A neuron 
state Vsi was sampled periodically and hold with negligible clockfeedthrough 
whenever the clock went low. So our noisy neuron has a continuous-valued 
probabilistic output rather than the binary-valued output, which the 
stochastic neuron of the Boltzmann Machine in [19] has. 

6. MINIMISING-CONTRASTIVE-DIVERGENCE 
TRAINING IN VLSI 

The block diagram of the MCD training circuit in VLSI, along with the 
digital control signals, is depicted in Fig.11a. During the training mode 
(

������������
=1), the first two clocks, CKsi and CKsj, sample si and sj and the 

four-quadrant multiplier produces a current I+  proportional to si⋅sj. Then 
CK+  samples and memorises I+ . The one-step Gibbs sampled states � i and � j 
are sampled by CKsip and CKsjp to produce another current I–. CKq then 
sample and holds the output of current subtractor, Isub , which represents the 
difference between the initial data and its one-step reconstruction. It should 
be noted that using the same multiplier to compute si⋅sj and � i⋅� j enhances the 
training quality, as the subtractor cancels the offsets and other non-idealities 
of the multiplier. The previous clocking sequence is repeated for four times, 
such that four Isub are accumulated and averaged to produce Iave, which  
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Figure #-11. (a)The diagram of the MCD training circuit and (b)its digital control signals 
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represents 〈sisj〉4 – 〈

�
i
�

j〉4 in Eq.(3). The sign circuit [20] then compares Iave to 
a reference current to determine the training direction (DIR). Finally, the 
training circuit, triggered by CKup, “ nudges” the voltage stored on the Cw up 
or down accordingly. The dash-lined box represents the voltage-limiting 
circuit [12] used only for the parameters { aj} , whose range is limited to [1,3] 
V. In the refresh mode ( ������ ����� =0), the signal REFR, rather than DIR, 
determines the updating direction, maintaining the parameter to a learnt 
value for the reconstruction phase of multi-step Gibbs sampling. 

Fig.12a shows the circuit of our current subtractor. Its accuracy is 
enhanced by using improved Wilson current mirrors to minimise the effect 
of channel length modulation. The bias current Ibias defines the reference-
zero current, such that the output current Isub is always non-negtive. The sum 
of the current inputs Iin+ + Ibias is then accurately mirrored to M8 & M6, 
while the current I in– is mirrored to M13 & M15. As a consequence, the 
difference current, I in+  – I in–+ Ibias, is mirrored to the output transistors M20 
and M18. The measured DC characteristics of the current subtractor are 
depicted in Fig.12b, revealing that the response is very linear. The bottom 
graph of Fig.12b expresses the error, i.e. the non-linearity, as a percentage. 
The error remains extremely low (< 5%) in the critical range where Iin+ ≈ Iin–	   
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Figure #-12. (a) The circuit and (b) the measured DC characteristic of the current comparator 
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Figure #-13. Current accumulator/averaging circuit 
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and only increases when the output current approaches zero. 

To accumulate four Isub and calculate its average value, the current 
accumulator circuit [20] (Fig.13) juxtaposes four dynamic current mirrors 
[21]. Each current mirror is active on a different clock cycle (q1~q4 of 
Fig.11). The dynamic current mirror relies on the fact that the current 
flowing through a MOS transistor depends primarily on the voltage applied 
to its gate. So for two matched MOSFETs, any VGS will generate an identical 
current in each transistor. As the current I in produces a voltage at the gate of 
the active load M1, each clock cycle passes this voltage onto one of the 
short-term memory capacitors, Cmem, biasing another identical transistor. 
After four clock cycles, four Isub are memorised on M2, M3, M4 and M5, 
and are subsequently mirrored (by M8-M15) and summed at M6. Finally, the 
4-to-1 size ratio between M6 and M7 computes the average of the four 
currents. Although not represented in Fig.13, dummy switches are used to 
compensate for charge injection [22] caused by the switching of q1-q4. The 
test results presented in Table 2 show that the accumulation and averaging of 
currents occurs with 7% accuracy. However, the consistency of the results 
over 6 chips suggests that the output currents are actually mostly affected by 
small negative offsets. These offsets are acceptable as they wil l be trained 
out during training, reducing the margin of error of our circuit. 

The pulse-coded training circuit consists of a pulse generator (Fig.14a) 
and the training cell proposed in [23] (Fig.14b). When the training cell is 
enabled (EN=1), the training cell charges or discharges the voltage stored on 
Cw according to the directional input 

� ������� � . Though the training step-
size is adjustable via VP and VN in Fig.14b, we prefer to adjust it by 
controlling a width-variable pulse to the input (EN) of the training cell. This 
enables us to control the training step precisely by monitoring the pulse 
width, controlled by the voltage Vmu [20]. Vmu fixes the training parameter η 
of Eq.(3). Since the input capacitance of each training cell is less than 0.1pF, 
one pulse generator can control all the training cells, giving rise to a uniform 
training. Each of the CRBM training parameters ηw, ηav, and ηah requires 
only one pulse generator.  Fig.14c shows the chip results. Pulses as short as 
5ns (Vmu=2.5V) to as wide as 100ms (Vmu=4.5V) can be obtained. With 
VN=0.75V, VP=4.3V and Cw=1pF changes as small as 1mV are easily 
achieved, therefore allowing accurate control of the training parameters. 

Table #-1. Test results of the current accumulator/averaging circuit 
Iin Chip1 Chip2 Chip3 Chip4 Chip5 Chip6 Error(%) 
0.5 0.464 0.473 0.463 0.451 0.467 0.474 6.94 

0.999 0.937 0.948 0.931 0.878 0.939 0.936 7.09 
1.499 1.409 1.419 1.397 1.351 1.405 1.411 6.69 
1.999 1.875 1.891 1.857 1.819 1.864 1.881 6.72 
2.498 2.335 2.333 2.321 2.263 2.334 2.329 7.15 
2.998 2.794 2.816 2.776 2.729 2.792 2.796 7.14 
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Figure #-14. The pulse-coded training circuit consists of (a) a pulse generator (b) the training 
cell proposed in [23]. (c)The measured variable pulse width versus Vmu 

The MCD training circuitry controls every single training parameter on-
chip. To ease the testing, si and $ i are fixed at 3.5V, while sj and $ j  alternate 
between 1.5V and 3.5V, as shown by the traces sj and sjp in Fig.15 and 
Fig.16. With the reference zero being defined at 2.5V, the parameters should 
learn down when sj = 3.5V and $ j = 1.5V, and learn up when sj = 1.5V and $ j 
= 3.5V. Fig.15 shows the measured on-chip training of two parameters, wij 
and ai, with different training rates. Both parameters were initially refreshed 
to 2.5V when LER/REF=0, and subsequently started to train up and down in 
response to the changing sj and sjp when LER/REF=1. As controlled by 
different pulse widths (Pulse1 and Pulse2), the two parameters were updated  
with different step sizes (10mV and 34mV), but in the same direction. The  
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Figure #-15. Measurement of parameter ai and wij training in different training rates 
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Figure #-16. Measurement of parameter ai and wij training in different direction 

trace of parameter ai shows digital noise attributable to sub-optimal layout 
and has been improved in subsequent design. Fig.15 shows the measured on-
chip training of two parameters, wij and ai, in different directions. Both 
parameters were refreshed to 3.5V and the voltage Vmax for ai set to 3V. 
Therefore, the voltage-limiting circuit forces ai to decrease toward Vmax, 
while wij remains training up and down when LER/REF=1. 

7. CONCLUSION 

The Continuous Restricted Boltzmann Machine is a probabili stic neural 
algorithm amenable to hardware implementation. Simulation results show 
that the CRBM models the variability of data by adapting not only its 
weights but also its “ internal noise” to guarantee a robust output for 
classification. The measured results, on the other hand, demonstrate on-chip 
unsupervised training for the CRBM neurons. The full CRBM system wil l 
thus has continuous probabilistic behaviour that enhances not only the 
system’s “ intelligence”  for classification, but also the system’s immunity to 
noise and local computational errors. As the continuous stochastic behaviour 
relies on the noise injection into the system, the full CRBM system further 
opens a possibil ity of utilising VLSI intrinsic noise for computation. This 
issue is especially important when the fabrication process enters the deep-
sub-micron era, where VLSI intrinsic noise becomes non-negligible. 
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