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Abstrad: This chapter introduces the Continuous Redricted Boltzmann Machine, a
probabilistic neurd agorithm which is both useful in modelling continuous
data and amenable to VLSl implementation. The capabiliti es of the model are
explored with both artificial and real data. The computing units (neurons) and
the unsupervised training rule have been implemented in VLSI. These results
demonstrate the feasibility of a full VLSI model that uses continuous
probabilistic behaviour to model the noise associated with all rea signals, and
therefore acts as arobust classifier or novelty detector.
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1. INTRODUCTION

As interests in implantable systems and hybrid bio-éectrical systems
grow, sensors and eectronic circuits are exposed to noisy environments that
introduce not only serious Ensory drifts but also nan-negligible eledronic
noise. An inteligent system able to preprocesssuch noisy and drifting data
at the sensory or bio-éectrical interface is thus of grea importance. By
“intdligence’, we mean the ability to classify or deted novelty in noisy data.
Deterministic neural architectures (e.g. the Multi-Layer-Perceptron), though
proven to be useful as classifiers, requires supervised, on-line calibration to
ded with noisy and drifting data. In addition, the acurate arithmetic
required by deterministic neural computation bewmmes infeasible in
hardware as the signal-to-noise ratio greatly degrades in noisy environments.

Probabilistic neural computation offers a more flexible route to improved
data modelling, utilising stochasticity to model the natural variability of real
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data. The principle of probabilistic neural computation is that the input of a
computing unit (called neuron hereafter) merely decides the probability of
the neuron’s output. The probabilistic neurons are therefore less snsitive to
the noise or computational errors at their inputs, rendering probabilistic
neural computation a potential candidate for underpinning an embedded
intelligent and red system.

However, probabili stic models have not yet been shown to be both useful
and hardware-amenable. The cntinuous-valued nature of most real-world
signals further restricts the choice of models. Though precise computation of
conditional probability and reliable Bayesian rules have been demonstrated
in VLSI implementation in [1][2][3], precise computation is vulnerable to
both intrinsic dectronic noise and environmental interferences. The VLSI
implementation d Bayesian rules is thus nat suitable for underpinning an
intelligent system exposed to noisy environments. Progress in stochastic
arithmetic computation [4][5][6][7] suggests that coding continuous values
into probabilistic digital pulses may reduce vulnerability to noise. However,
the probabilistic-pulse scheme is linked to a fully-digital VLSI
implementation which is both power- and area consuming. It is therefore
not ideal for an intelligent embedded system, where power and area are
criticd.

This chepter introduces a continuous-valued probabilistic model, the
Continuous Restricted Boltzmann Machine (CRBM) [8], capable of
modelling analogue (continuous-valued) data with a simple and
unsupervised training algorithm. The Boltzmann Machine [9] is a
probabilistic model consisting of binary stochastic neurons. The CRBM,
though a descendant of the Boltzmann Madine, comprises continuous
stochastic neurons. They are analogous to the neurons in the Diffusion
Network [10], but have limited interconned [11]. As a result, the CRBM
shows greaer ability to model analogue data than does the Boltzmann
Madhine or the Restricted Boltzmann Machine [8], while the training o the
CRBM can be accomplished with only one step of Gibbs sampling, unlike
the Boltzmann Machine or the Diffusion Network [9][10]. With a suitable
approximation, the training algorithm also requires only subtraction and
multiplication. It is thus computationally inexpensive in both software and
hardware.

The @pabilities of the CRBM are demonstrated with bath artificial and
real analogue data [8], as detailed in the following sections. The analogue
VLSI implementation of the CRBM [12] is presented and discussed. As the
stochastic behaviour of the CRBM isdriven by noise injedion to its neurons,
the CRBM learns to adapt its “internal noise” to model the variabili ty in the
external environments, i.e. the “external noise’. The full CRBM in VLSI is
therefore a potential candidate for intelligent embedded system.
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2. CONTINUOUSRESTRICTED BOLTZMANN
MACHINE

The Continuous Restricted Boltzmann Machine consists of continuous-
valued stochastic neurons. Let s represent the state of neuron i, and w; the
connection between neuron i and neuron j. The stochastic behaviour of the
neuron i is described as

s, = (pl.[z WS, +0 Nl.(O,l)]
! | @

with @,(x)=60,+(0, -0,) ————

1+ exp(—a,x;)

where Ni(0,1) represents a sample of Gaussian noise with zero mean and unit
variance, o represents a hoise-scaling constant, and ¢;(0)] denotes the sigmoid
function with asymptotes at 64 and 6. Parameter a controls the slope of
sigmoid function and consequently the output probability distribution of the
neuroni [13], as sown in Fig.1. A large value for g leadsto a sharp sigmoid
function resulting in a binary stochastic neuron. A small a renders the
neuron’s input noise negligible and leads to a near-deterministic neuron.
When & has an intermediate value such that the noise variation is
comparable to the width o the linear region of the sigmoid function, the
neuron i becomes continuous stochastic. Its output distribution then
approximates a Gaussian with mean J;w;s and variance o°. Adapting &
eff edively adapts the influence of the input noise on the output distribution,
so werefer to a; asthe “ noise-control parameter”.

The CRBM is obtained by connecting the continuous gochastic neurons
into a restricted form, as shown in Fig.2. Each circle in Fig.2 represents one
stochastic neuron, and the neurons are grouped into two layers, one visible
and one hidden layers. The blad circles represent the bias neurons, whose
outputs are permanently “on” . Theinter-layer connedions of the neurons are
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Figure#-1. The output distribution of a continuous sochastic neuron can vary from (a)binary
stochastic, to (b) continuous stochastic, and to (c)near-deterministic.
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Figure#-2. The diagram of stochastic neurons connected in arestricted form.

symmetric (W = w;). The visible neurons are the interface between the
CRBM and its environment. The number of visible neurons thus normally
corresponds to the number of dimensions of the environment or the data the
CRBM must model. Hidden neurons function as individual “experts’, eadh
of which represents a particular part of the overall model defined by the
connections between one hidden neuron and all visible neurons (ex. wi; in
Fig.2). Therefore, a particular hidden neuron responds more to specific
inputs when their combination state aligns with part of the model associated
with that hidden neuron. This advantageous feature is especially useful when
the model is employed as a classifier. Classifying unknown data can then be
achieved by observing the response of the hidden neurons, as demonstrated
in[8].

The CRBM is a stochastic generative model that learns to reconstruct
data points with the same probability distribution as the training data. The
training rules of the CRBM are derived by minimising the “contrastive
divergence” between the training data and the one-step Gibbs sampled data
[14][8]. During training, ead training datum v is clamped to the visible
neurons such that the output probabilities of the hidden neurons are
conditionally independent. The states of the hidden neurons h are then
sampled. The same procedure is repeated so the visible and hidden neurons
are sampled once more. The new visible states v are derived from h and the
corresponding new states of the hidden neurons h re-sampled. v and h are
called one-step Gibbs sampled states. The parameters of the CRBM are
updated according to the following equation [8].

Aw, =1, (<vl.hj> — <ﬁiﬁ]. >)

s, = 2)-() @

a.

1

where v; and h; refer to the states of visible neuron i and hidden neuron j,
respectively, and s represents both v; and h;. The constants n,, and n, define
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the training rates of w; and a&;, respectively, and the bracket [Iin Eq.(2)
denotes the expectation value over al training data. Eqg.(2) shows that the
training rules of the CRBM mainly comprise multiplications and
subtractions. Implementing the CRBM is therefore inexpensive in both
software and hardware.

3. TRAINING ARTIFICIAL AND REAL DATA

Simple, but non-trivial, two-dimensional datasets, shown in Fig.3a, were
generated to demonstrate the CRBM's ability to model analogue data. The
training data in Fig.3a comprise two clusters of 200 data points, resembling
the measurements of two sensors exposed to two different noisy
environments. A CRBM with two visible neurons and four hidden neurons
was trained to model this artificially-generated data, with n,, = 1.5, na = 1,
6, =-6. =1, and o = 0.2 for al neurons. Note that the number of hidden
neurons was chosen empirically to optimisemodelling ability [8]. After 4000
training epochs, the CRBM reconstructed the data points as depicted in
Fig.3b. This nea-equilibrium reconstruction was obtained by initially setting
the visible states to random values, and then Gibbs sampling hidden and
visible neurons alternatively for 20 steps. The reconstructed pdnts have
approximately the same distribution as the training data, indicaing that the
CRBM modell ed the training data successfully.

Fig.4 shows the evolution of the noise-control parameter {a} during
training, revealing that the CRBM adapts not only its weights but also its
“internal noise” to mode the variability in the training data. Very ealy in
the training, the {a} of the visible neurons rises abruptly to form near-
binary stochastic neurons. At this stage, the CRBM eff ectively explores the
gross gructure of the training data. The {a} of the visible neurons then
gradually decreases to reduce the noise level of the visible reurons, such that
the CRBM is ableto capture the detail ed distribution of thetraining datain

1 1

@ &)

Figure#-3. (@) The artificially-generated two-dimensional training data(b) the recongtruction
by the trained CRBM from 400 randomly-distributed data after 20 steps of Gibbs sampling
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Figure#-4. Theevolution of the "noise-control" parameter {a;} of (a)visible neurons
(b)hidden neurons during training

its {w;}. The { &} of the hidden neuronsin Fig.4b, on the other hand, reveds
the formation d a“decision maker”. The g of the hidden neuron H3 risesto
a large value (= 3) by the end of the training, while the {a} of the other
hidden neurons remained around 1. The hidden neuron H3 has therefore
become a nea-binary stochastic neuron. Its output is likely to indicate which
cluster the datum presented to visible neurons belongs to.

To highlight the modelling richness of the CRBM and to demonstrate its
ability to classify real data [8], we have trained a CRBM with four hidden
neurons to mode the ECG data used in [15] and [16]. After training, the
CRBM was able to reconstruct both normal heartbeats and ventricular
ectopic beats (VEBS) (Fig.5), despite the fact that the VEBs represent merely
1% of training data. Furthermore, one hidden neuron became near-binary
stochastic after training, as did the hidden neuron H3 in Fig.4b. This hidden
neuron was thus used to indicae the presence of VEBsin thetesting chta, as
depicted in Fig.6. The strong peaks in Fig.6 highlight the VEBSs clearly. VL
marks the minimum output correspondingto a VEB and QH marksthe

0.7 0.7

65 1 65

@ k)

Figure#-5. The ECG traces, of (a) normal heartbedas (b) ectopic beats, sampled from training
data (solid line) and recongtructed by the trained CRBM (dashed line) after 20 steps of Gibbs
sampling from initiall y-random input.
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Figure#-6. The output of the decision-maker hidden neuron in responseto 1700 testing data.

maximum output corresponding to a normal heatbeat. A simple linear
classifier with threshold between the two dashed lines will detect VEBswith
an accuracy of 100%. Compared to [16] where a 64-16-64 MLP was trained
to model the same data, the best accuracy achieved was only 99.3%. The
CRBM is therefore a reliable classifier, and it is expected that layering a
supervised classifier onthe CRBM, to “fuse’ the output adivities of hidden
neurons, will lead to improved results.

4. SIMPLIFICATION FOR HARDWARE
IMPLEMENTATION

The training rules in Eq.(2) can be simplified to further facilitate their
hardware implementation. Updating the parameters by variable-size steps is
more demanding than is a fixed-size step. We therefore chose to take only
the sign of the contrastive divergence [15]. The bracket IMin EQ.(2) denotes
the expectation value over al the training data. However, accumulating and
retaining all these values is very impractical and area costly. We therefore
approximate the expectation value by the average of only four training data
as opposed to that of all training data. The simplified training rules are
written as;

Aw, —nszgn(<”> ~(34,),)

5.8, -
Aa, =n, szgn( > )

where s and s represent the state of neuron i and j. Note that the
denominator 1/a° in Eq.(2) is also absorbed and [Ij indicates the average
over four training data.

To vaidate the simplifications made, a CRBM with four hidden neurons
was trained with Eq.(3) to model the artificially-generated training data
previously used in Sec.3. Thenumber of training data was reduced to 20, as
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Figure#-7. ()20 artificialy-generated training data (b) 200 data points recongtructed by the
CRBM &fter 20 geps of Gibbs sampling

shown in Fig.7a, in order to simplify the hardware testing. Fig.7b shows the
data points reconstructed by the CRBM after 30,000 training epochs with n,,
= 1.5, n, = 15 for the visible neurons and n, = 1 for hidden neurons. Fig.7b
reveals that the CRBM was still able to capture the correct distribution of the
training data. Therefore, the simplifications of the training rules made in
Eq.(3) reduce the hardware complexity at the only cost of a dightly slower
convergencetime, with this set of data.

5. A NOISY NEURON IN VLS|

Fig.8 shows the circuit diagram of a noisy neuron. The outputs of the
wide-range four-quadrant multipliers [12] are summed up into a current
representing 2wi;s;, while the differential pair, Mna and Mnb, transforms the
noise voltage vy into a noise current iy = gm (Vni-Vir). The voltage Vsgma then
controls the transconductance gm, scaling the noise current as o in Eq.(1).
The |-V converter, composed of an operational amplifier and a voltage-
controlled active resistor, subsequently feeds its output to the sigmoid
function. The exponential nonlinearity of the sigmoid function is achieved

SlO-><
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Vsigrna0'|

Figure#-8. Thecircuit diagram of anoisy neuron
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by operating the PMOS differential pair, Mbpl and Mbp2, in the lateral
bipolar mode [17], resulting in a differential output current as following.

i =iy —i, =1, ¢[ f( )] @

t

where ¢ (-) denotes the sigmoid function ¢ (J/with 6, = -6 = 1, and
Vi=KT/q is the thermal voltage. The resistor R_ finally converts i, into the
voltage Vo=i,R.+ Vs EQ.(4) indicatesthat V, controls the feedback resistance
of the I-V converter, and consequently adapts the nonlinearity of the sigmoid
function as a in Eq.(1). The measured DC characteristics of the fourquadrant
multiplier and the sigmoid function, corresponding to various Vs, are shown
in Fig.9. To ensure the normal operation of the voltage-controlled resistor,
thevoltage V, arelimited to [1, 3]V [12].

The noise generator is implemented by Linear Feedback Shift Register
(LFSR) [18].Fig.10a shows the measured amplitude distribution of one
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Figure#-9. The measured DC characteristics of (a) awide-range four-quadrant multiplier and
(b) asigmoid function with variable nonlineerity.
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Figure#-10. The measured (8) amplitude distribution of noise signal and (b) the output of a
noisy neuron with the injedion of the signal in (a).
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channel of the LFSR noise generator. The distribution approximates a
Gaussian distribution. The maximum amplitude of the noise input vy is
scaed to 0.4V and injeded into the noisy neuron. Fig.10b shows the
measured autput of the noisy neuron with {s} sweeping between 1.5 and
3.5V, {wj} =4V, and V,;=1.8V. Such {s} and {w;} forces the neuron’s
output to sweep a sigmoid-shaped curve as Fig.9b, while the noise injection
disturbs the arveto gve a continuous-valued probabilistic output. A neuron
state V5 was sampled periodically and hold with negligible clockfeedthrough
whenever the clock went low. So our naisy neuron has a continuous-valued
probabilistic output rather than the binary-valued output, which the
stochastic neuron of the Boltzmann Machinein [19] has.

6. MINIMISING-CONTRASTIVE-DIVERGENCE
TRAINING IN VLSI

The block diagram of the MCD training circuit in VLSI, along with the
digital control signals, is depicted in Fig.11a. During the training mode
(LER/REF =1), the first two docks, CKsi and CKsj, sample s and s and the
four-quadrant multiplier produces a current |, proportional to s[S. Then
CK+ samples and memorises I.. The one-step Gibbs sampled states §; and 5
are sampled by CKsip and CKgjp to produce another current |_. CKq then
sample and holds the output of current subtractor, I, , which represents the
difference between the initial data and its one-step reconstruction. It should
be noted that using the same multiplier to compute slS; and $;[§ enhances the
training quality, as the subtractor cancds the offsets and other non-idealities
of the multiplier. The previous clocking sequence is repeated for four times,
such that four |, are accumulated and averaged to produce | ,ve, Which

si CKq 0—| Digital control CKs

, (| -
CK+ Q| Bl B @ Tef CKS]—H—ZZ
CKsip FRAYA I
X A [ Jsub Current- Tave J—(
5 | >< accumulating/ 1 R ¢
1 averaging circuit -+ CKSM—Z
(K sien 2
% DR CKSJ’I”;H_Zi
K i Pulse-coded ‘ Voltage Veomp CK44‘_L:ZJ_L
CKsip CWJ: lezﬂmg C”j)m éhmﬂz ql jﬂ
. ) CKMP—Z
50X 1 CKw Ve  LRRE REg T VM 2

@) (b)

Figure#-11. (8) The diagram of the MCD training circuit and (b)its digital control signals
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represents [$s4— i in Eq.(3). The sign circuit [20] then compares | to
a reference arrent to determine the training direction (DIR). Finally, the
training circuit, triggered by CKup, “nudges’ the voltage stored on the C,, up
or down accordingly. The dash-lined box represents the voltage-limiting
circuit [12] used only for the parameters { a} , whose range is limited to [1,3]
V. In the refresh mode (LER/REF=0), the signal REFR, rather than DIR,
determines the updating direction, maintaining the parameter to a learnt
valuefor the reconstruction phase of multi-step Gibbs sampling.

Fig.12a shows the circuit of our current subtractor. Its aacuracy is
enhanced by using improved Wilson current mirrors to minimise the dfect
of channel length modulation. The bias current Iy, defines the reference
zero current, such that the output current |, is always non-negtive. The sum
of the current inputs lin + Ipias iS then accurately mirrored to M8 & M6,
while the airrent |, is mirrored to M13 & M15. As a mnsequence, the
difference airrent, line — lint lpias, iS mMirrored to the output transistors M20
and M18. The measured DC characteristics of the current subtrador are
depicted in Fig.12b, revealing that the response is very linea. The bottom
graph o Fig.12b expresses the aror, i.e. the non-linearity, as a percentage.
Theerror remains extremely low (< 5%) in thecritica rangewherel;,, = |

in—

\ - - - Ibias

. — lin+
SO i

5 . . .
™ —o- lout
<
2

M10 M13

H
<
Error %| |,

Vdd

(0]

1

Figure#-13. Current accumulator/averaging circuit
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and only increaseswhen the output current approacteszero.

To accumulate four lgp and calculate its average value, the airrent
accumulator circuit [20] (Fig.13) juxtaposes four dynamic current mirrors
[21]. Each current mirror is adive on a different clock cycle (gi~qs of
Fig.11). The dynamic current mirror relies on the fact that the airrent
flowing through a MOS transistor depends primarily on the voltage gplied
to its gate. So for two matched MOSFETS, any Ves Will generate an identical
current in each transistor. Asthe current |;, produces a voltage at the gate of
the adive load M1, eat clock cycle passes this voltage onto one of the
short-term memory cgpadtors, Chenm, biasing another identical transistor.
After four clock cycles, four lgy, are memorised on M2, M3, M4 and M5,
and are subsequently mirrored (by M8-M15) and summed at M6. Finally, the
4-to-1 size ratio between M6 and M7 computes the average of the four
currents. Although not represented in Fig.13, dummy switches are used to
compensate for charge injection [22] caused by the switching of q;-gs4. The
test results presented in Table 2 show that the accumulation and averaging of
currents occurs with 7% accuracy. However, the mnsistency of the results
over 6 chips suggests that the output currents are acually mostly affected by
small negative offsets. These offsets are acceptable as they will be trained
out during training, reducing the margin of error of our circuit.

The pulse-coded training circuit consists of a pulse generator (Fig.14a)
and the training cell proposed in [23] (Fig.14b). When the training cdl is
enabled (EN=1), thetraining cdl charges or discharges the voltage stored on
C. according to the diredional input INC/DEC. Though the training step-
size is adjustable via Ve and Vy in Fig.14b we prefer to adjust it by
controlling a width-variable pulse to the input (EN) of the training cdl. This
enables us to control the training step precisely by monitoring the pulse
width, controlled by the voltage Vi, [20]. Vi fixes the training parameter n
of Eq.(3). Since the input capacitance of each training cdl is less than 0.1pF,
one pulse generator can control all the training cells, giving rise to a uniform
training. Each of the CRBM training parameters nw, Nay, and Nan requires
only one pulse generator. Fig.14c shows the chip results. Pulses as short as
5ns (Vm=2.5V) to as wide as 100ms (Vm=4.5V) can be obtained. With
Vn=0.75V, V=43V and C,=1pF changes as small as 1mV are easily
achieved, therefore allowing accurate control of the training parameters.

Table#-1. Ted results of the current accumulator/averaging circuit

lin Chipl  Chip2 Chip3 Chip4 Chip5 Chip6 Error(%)

05 0.464 0473 0.463 0451 0.467 0474 6.94
0.999 0.937 0.948 0.931 0.878 0.939 0.936 7.09
1.499 1.409 1.419 1.397 1351 1.405 1411 6.69
1.999 1.875 1.891 1.857 1.819 1.864 1.881 6.72
2498 2335 2.333 2321 2.263 2334 2.329 7.15
2.998 2.79% 2.816 2.776 2729 2.792 2.796 7.14
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Figure#-14. The pulse-coded training circuit consigts of () a pulse generator (b) the training
cell proposed in [23]. (c)The measured variable pulse width versus V,,,

The MCD training circuitry controls every single training parameter on-
chip. To easethe testing, s and §; are fixed at 3.5V, while s and §; alternate
between 1.5V and 3.5V, as shown by the traces ) and sjp in Fig.15 and
Fig.16. With the reference zero being defined at 2.5V, the parameters should
learn downwhen s = 3.5V and §; = 1.5V, and learn up when s = 1.5V and §
= 3.5V. Fig.15 shows the measured on-chip training of two parameters, w;;
and a; with different training rates. Both parameters were initially refreshed
to 2.5V when LER/REF=0, and subsequently started to train up and downin
response to the changing § and sjp when LER/REF=1. As controlled by
different pulse widths (Pulsel and Pulse?), the two parameters were updated

with different step sizes (10mV and 34mV), but in the same direction. The

s/
g e I e
sy /7 —. .y
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Pulset | 1 | | | | | | |

Pulse2 | | 11 1 1 1 ) 1
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T 25F
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Figure#-15. Measurement of parameter ai and wij training in different training rates
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Figure#-16. Measurement of parameter ai and wij training in different drection

trace of parameter a; shows digital noise atributable to sub-optimal layout
and has been improved in subsequent design. Fig.15 shows the measured on-
chip training of two parameters, w; and &, in different diredions. Both
parameters were refreshed to 35V and the voltage Viax for a; set to 3V.
Therefore, the voltage-limiting circuit forces a; to decrease toward Vi,
while wi; remains training upand down when LER/REF=1.

7. CONCLUSION

The Continuous Restricted Boltzmann Machine is a probabili stic neural
algorithm amenable to hardware implementation. Simulation results sow
that the CRBM models the variability of data by adapting rot only its
weights but also its “internal noise’ to guarantee a robust output for
classification. The measured results, on the other hand, demonstrate on-chip
unsupervised training for the CRBM neurons. The full CRBM system will
thus has continuous probabilistic behaviour that enhances not only the
system'’s “intdligence” for classificaion, but aso the system’s immunity to
noise and locd computational errors. As the continuous stochastic behaviour
relies on the noise injedion into the system, the full CRBM system further
opens a possibility of utilisng VLSI intrinsic noise for computation. This
issue is especially important when the fabrication process enters the deep-
sub-micron era, where VL SI intrinsic noise becomes nornnegligible.



#. Unsupervised Probabilistic Neural Computation in Analogue VLS| 15

References

[1]  Specht, D. F., "Probabilistic Neural Networks," Neural Networks, vol. 3 pp. 109

118, 1990.

[2] Aibe N., Yasunaga, M., Yoshihara, I., and Kim, J. H. A Probabilistic Neura

Network Hardware System Using a Training-parameter Parallel Architedure. 3, 2270

2275. 12-5-2002. Proceedings of the 2002 International Joint Conference on Neural

Networks.

[3] Hs, D., Bridges, S., Figueroa, M., and Diorio, C. Adaptive Quantization and
Density Edimation in Silicon. 15. 2003. Advances in Neura Informaion Processing
Systems (NI1PS02). 2002.

[4] Bout, D. E. V. D. and Millerlll, T. K., "A Digital Architecture Employing
Stochastician for the Simulation of Hopfield Neural Nets," IEEE Transactions on Circuits
and Systems, val. 36, no. 5, pp. 732-738, May1989.

[5] Clarkson, T. G., Gorse, D., Taylor, J. G., and C.K.Ng, " Training Probabilistic RAM

Nets Using VLS| Structures," IEEE Transactionson Computers, vol. 41, no. 12, pp. 1552 -

1561, Dec.1992.

[6] Clarkson, T. G., Ng, C. K., and Guan, Y., "The pRAM : An Adaptive VLSI Chip,"

|IEEE Transactionson Neural Networks, vol. 4, no. 3, pp. 408-412, May1993.

[71 Brown, B. D. and Card, H. C., "Stochastic Neural Compuation | : Computational

Elements" |IEEE Transactions on Computers, vol. 50, no. 9, pp. 891-905, Sept.2001.

[8] Chen, H.andMurray, A. F.,"A Continuous Regtricted Boltzmann Machine with an

Implementable Training Algorithm," IEE Proceedings of Vision, Image and Signal

Processing, vol. 150, no. 3, pp. 153-158, 2003.

[9] Hinton, G. E. and Senowski, T. J, "Training and Retraining in Boltzmann

Machine" in Rumehart, D., McClelland, J. L., and the PDP Reseach Group (eds)

Parallel Distributed Processing: Explorations in the Microstructure of Cognition

Cambridge, Massachusetts: MIT, 1986, pp. 283-317.

[10] Movellan, J. R., "A training theorem for networks at detailed stochastic
equilibrium," Neural Computation, vol. 10, no. 5, pp. 1157-1178, 1998.

[11] Smolensky, P., "Information Procesdng in Dynamical Systems: Foundaions of

Harmony Theory," in Rumelhart, D., McCléland, J. L., and the PDP Reseach Group (eds.)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
Cambridge, Massachusetts: MIT, 1986, pp. 195-281.

[12] Chen, H., Fleury, P., and Murray, A. F. Minimising Contrastive Divergence in
Noisy, Mixed-mode VLS| Neurons. Advances in Neurd Information Processng Systems
(NIPS2003) . 2004.

[13] Frey, B. J. Continuous Sigmoidal Belief Networks Trained Using Slice Sampling. 9,
452-458. 1997. Advances in Neurd Information Processing Systems.

[14] Hinton, G. E., "Training Products of Experts by Minimizing Contrastive
Divergence" Neural Computation, vol. 14, no. 8, pp. 1771-1800, Aug.2002.

[15] Murray, A. F., "Novelty detedion usng products of simple experts - a potential

architedure for embedded systems," Neural Networks, vol. 14, no. 9, pp. 1257-1264, 2001.
[16] Tarassenko, L., Clifford, G., and Townsend, N., "Detection of edopic beats in the
eledrocardiogram using an auto-associative neural network," Neural Processing Letters,
vol. 14, no. 1, pp. 15-25, 2001.

[17] Vittoz, E., "MOS Transistor Operated in the Lateral Bipolar Mode and Their
Applicaion in CMOS Technology," |EEE Jounals of Solid-State Circuits, vol. SC-18, no.
3, pp. 273-279, Junel983.



Chapter #

[18] Alspector, J., Gannett, J. W., Haber, S, Parker, M. B., and Chu, R., "A VLSI-
efficient Technique for Generaing Multiple Uncorrelated Noise Sources and Its
Applicaion to Stochastic Neura Networks," |EEE Transactions on Circuits and Systems
vol. 38, no. 1, pp. 109-123, 1991.

[19] Alspector, J., Jayakumar, A., and Luma, S. Experimental Evaluation of Training in
a Neural Microsystem. 4, 871-878. 1992. Advances in Neural Information Processing
Systems (NIP391).

[20] Feury, P. and Murray, A. F. Mixed-Signal VLSI Implementation of the Products of
Experts' Contragtive Divergencd raining Scheme. 5, 653-656. 2008. Proceedings of the
IEEE International Symposium on Circuits And Systems (ISCAS' 2003).

[21] Wegmann, G. and Vittoz, E. A., "Basic Principles of Accurate Dynamic Current
Mirrors," |EE Proceedings on Circuits, Devices and Systems, vol. 137, no. 2, pp. 95-100,
1990.

[22] Wegmann, G., Vittoz, E. A., and Rahali, F., "Charge Injection in Andog {MOS}
Switches," IEEE Journal of Solid-State Circuits (JSSC), vol. 22, no. 6, pp. 1091-1097,
Dec.1987.

[23] Cauwenberghs, G., "An Anadog VLSI Recurrent Neural Network Training a
Continuous-Time Trajectory,” |EEE Transactions on Neural Networks, vol. 7, no. 2, pp.
346-361, Mar.2003.



