
Chapter #

UNSUPERVISED PROBABILISTIC NEURAL
COMPUTATION IN ANALOGUE VLSI
Subtitle

H. Chen, P. Fleury, and A.F. Murray
School of Engineering and Electronics, Edinburgh University

Abstract: This chapter introduces the Continuous Restricted Boltzmann Machine, a
probabil istic neural algorithm which is both useful in modelling continuous
data and amenable to VLSI implementation. The capabiliti es of the model are
explored with both artificial and real data. The computing units (neurons) and
the unsupervised training rule have been implemented in VLSI. These results
demonstrate the feasibil ity of a full VLSI model that uses continuous
probabil istic behaviour to model the noise associated with all real signals, and
therefore acts as a robust classifier or novelty detector.

Key words: Probabil istic neural computation, Probabilistic VLSI, Boltzmann Machine

1. INTRODUCTION

As interests in implantable systems and hybrid bio-electrical systems
grow, sensors and electronic circuits are exposed to noisy environments that
introduce not only serious sensory drifts but also non-negligible electronic
noise. An intelligent system able to preprocess such noisy and drifting data
at the sensory or bio-electrical interface is thus of great importance. By
“ intell igence” , we mean the ability to classify or detect novelty in noisy data.
Deterministic neural architectures (e.g. the Multi-Layer-Perceptron), though
proven to be useful as classifiers, requires supervised, on-line calibration to
deal with noisy and drifting data. In addition, the accurate arithmetic
required by deterministic neural computation becomes infeasible in
hardware as the signal-to-noise ratio greatly degrades in noisy environments.

Probabilistic neural computation offers a more flexible route to improved
data modelling, utilising stochasticity to model the natural variabili ty of real

2 Chapter #

data. The principle of probabil istic neural computation is that the input of a
computing unit (called neuron hereafter) merely decides the probability of
the neuron’s output. The probabil istic neurons are therefore less sensitive to
the noise or computational errors at their inputs, rendering probabilistic
neural computation a potential candidate for underpinning an embedded
intelligent and real system.

However, probabili stic models have not yet been shown to be both useful
and hardware-amenable. The continuous-valued nature of most real-world
signals further restricts the choice of models. Though precise computation of
conditional probability and reliable Bayesian rules have been demonstrated
in VLSI implementation in [1][2][3], precise computation is vulnerable to
both intrinsic electronic noise and environmental interferences. The VLSI
implementation of Bayesian rules is thus not suitable for underpinning an
intelligent system exposed to noisy environments. Progress in stochastic
arithmetic computation [4][5][6][7] suggests that coding continuous values
into probabil istic digital pulses may reduce vulnerability to noise. However,
the probabili stic-pulse scheme is linked to a fully-digital VLSI
implementation which is both power- and area- consuming. It is therefore
not ideal for an intell igent embedded system, where power and area are
critical.

This chapter introduces a continuous-valued probabilistic model, the
Continuous Restricted Boltzmann Machine (CRBM) [8], capable of
modelling analogue (continuous-valued) data with a simple and
unsupervised training algorithm. The Boltzmann Machine [9] is a
probabilistic model consisting of binary stochastic neurons. The CRBM,
though a descendant of the Boltzmann Machine, comprises continuous
stochastic neurons. They are analogous to the neurons in the Diffusion
Network [10], but have limited interconnect [11]. As a result, the CRBM
shows greater abil ity to model analogue data than does the Boltzmann
Machine or the Restricted Boltzmann Machine [8], while the training of the
CRBM can be accomplished with only one step of Gibbs sampling, unlike
the Boltzmann Machine or the Diffusion Network [9][10]. With a suitable
approximation, the training algorithm also requires only subtraction and
multiplication. It is thus computationally inexpensive in both software and
hardware.

The capabili ties of the CRBM are demonstrated with both artificial and
real analogue data [8], as detailed in the following sections. The analogue
VLSI implementation of the CRBM [12] is presented and discussed. As the
stochastic behaviour of the CRBM is driven by noise injection to its neurons,
the CRBM learns to adapt its “ internal noise” to model the variabili ty in the
external environments, i.e. the “external noise” . The full CRBM in VLSI is
therefore a potential candidate for intelligent embedded system.

#. Unsupervised Probabilistic Neural Computation in Analogue VLSI 3

2. CONTINUOUS RESTRICTED BOLTZMANN

MACHINE

The Continuous Restricted Boltzmann Machine consists of continuous-
valued stochastic neurons. Let si represent the state of neuron i, and wij the
connection between neuron i and neuron j. The stochastic behaviour of the
neuron i is described as

��������� �����	�

���
�����

�������
� ��� ���

���
����

������
��
!""#$ ��� %

&&&'
('

 (1)

where Ni(0,1) represents a sample of Gaussian noise with zero mean and unit
variance, σ represents a noise-scaling constant, and ϕi(⋅) denotes the sigmoid
function with asymptotes at θH and θL. Parameter ai controls the slope of
sigmoid function and consequently the output probability distribution of the
neuron i [13], as shown in Fig.1. A large value for ai leads to a sharp sigmoid
function resulting in a binary stochastic neuron. A small ai renders the
neuron’s input noise negligible and leads to a near-deterministic neuron.
When ai has an intermediate value such that the noise variation is
comparable to the width of the linear region of the sigmoid function, the
neuron i becomes continuous stochastic. Its output distribution then
approximates a Gaussian with mean ∑jwijsj and variance σ2. Adapting ai
effectively adapts the influence of the input noise on the output distribution,
so we refer to ai as the “noise-control parameter” .

The CRBM is obtained by connecting the continuous stochastic neurons
into a restricted form, as shown in Fig.2. Each circle in Fig.2 represents one
stochastic neuron, and the neurons are grouped into two layers, one visible
and one hidden layers. The black circles represent the bias neurons, whose
outputs are permanently “on” . The inter-layer connections of the neurons are

) *
+ ,
-�.0/ 1 2 3

4�576 8 9 :
; 9 6 < : = >

? @
A�B0C D EF

G�H7I J E K
L M N O P Q R

S T
U�V0W X YZ

[�\7] ^ Y _
` a b c d

e f�g e h0g e i�g

Figure #-1. The output distribution of a continuous stochastic neuron can vary from (a)binary
stochastic, to (b) continuous stochastic, and to (c)near-deterministic.

4 Chapter #

��� ��������
	 � 	 � 	�

�
 ��� ��

Figure #-2. The diagram of stochastic neurons connected in a restricted form.

symmetric (wij = wji). The visible neurons are the interface between the
CRBM and its environment. The number of visible neurons thus normally
corresponds to the number of dimensions of the environment or the data the
CRBM must model. Hidden neurons function as individual “ experts” , each
of which represents a particular part of the overall model defined by the
connections between one hidden neuron and all visible neurons (ex. wh1 in
Fig.2). Therefore, a particular hidden neuron responds more to specific
inputs when their combination state aligns with part of the model associated
with that hidden neuron. This advantageous feature is especially useful when
the model is employed as a classifier. Classifying unknown data can then be
achieved by observing the response of the hidden neurons, as demonstrated
in [8].

The CRBM is a stochastic generative model that learns to reconstruct
data points with the same probabil ity distribution as the training data. The
training rules of the CRBM are derived by minimising the “ contrastive
divergence” between the training data and the one-step Gibbs sampled data
[14][8]. During training, each training datum v is clamped to the visible
neurons such that the output probabilities of the hidden neurons are
conditionally independent. The states of the hidden neurons h are then
sampled. The same procedure is repeated so the visible and hidden neurons
are sampled once more. The new visible states � � are derived from h and the
corresponding new states of the hidden neurons

�
 re-sampled. � � and � are

called one-step Gibbs sampled states. The parameters of the CRBM are
updated according to the following equation [8]. � �

� ���� �
��

��� ��
������ � ��

��
 ! !"

#$%
#$% & &

 (2)

where vi and hj refer to the states of visible neuron i and hidden neuron j,
respectively, and si represents both vi and hi. The constants ηw and ηa define

#. Unsupervised Probabilistic Neural Computation in Analogue VLSI 5

the training rates of wij and ai, respectively, and the bracket 〈⋅〉 in Eq.(2)
denotes the expectation value over all training data. Eq.(2) shows that the
training rules of the CRBM mainly comprise multiplications and
subtractions. Implementing the CRBM is therefore inexpensive in both
software and hardware.

3. TRAINING ARTIFICIAL AND REAL DATA

Simple, but non-trivial, two-dimensional datasets, shown in Fig.3a, were
generated to demonstrate the CRBM’s ability to model analogue data. The
training data in Fig.3a comprise two clusters of 200 data points, resembling
the measurements of two sensors exposed to two different noisy
environments. A CRBM with two visible neurons and four hidden neurons
was trained to model this artif icially-generated data, with ηw = 1.5, ηa = 1,
θH = –θL = 1, and σ = 0.2 for all neurons. Note that the number of hidden
neurons was chosen empirically to optimise modell ing abil i ty [8]. After 4000
training epochs, the CRBM reconstructed the data points as depicted in
Fig.3b. This near-equil ibrium reconstruction was obtained by initially setting
the visible states to random values, and then Gibbs sampling hidden and
visible neurons alternatively for 20 steps. The reconstructed points have
approximately the same distribution as the training data, indicating that the
CRBM modelled the training data successfully.

Fig.4 shows the evolution of the noise-control parameter { ai} during
training, revealing that the CRBM adapts not only its weights but also its
“ internal noise” to model the variabili ty in the training data. Very early in
the training, the { ai} of the visible neurons rises abruptly to form near-
binary stochastic neurons. At this stage, the CRBM effectively explores the
gross structure of the training data. The { ai} of the visible neurons then
gradually decreases to reduce the noise level of the visible neurons, such that
the CRBM is able to capture the detailed distribution of the training data in

−1 1
−1

1

 −1 1
−1

1

(a) (b)

Figure #-3. (a) The artificially-generated two-dimensional training data (b) the reconstruction
by the trained CRBM from 400 randomly-distributed data after 20 steps of Gibbs sampling

6 Chapter #

� ������������������������	������
��
 �

�

 �

�

 �

��
 �

��
 �

���

� � ��� �
� �������
�����

���
���

 !� � � #"� � � %$� � � #&� � �

!

"

$

'
(

) * +�, -
, -�.�/�0
1�2�3

4��
4��
4�5
4
6

 (a) (b)

Figure #-4. The evolution of the "noise-control" parameter { ai} of (a)visible neurons
(b)hidden neurons during training

its { wij} . The { ai} of the hidden neurons in Fig.4b, on the other hand, reveals
the formation of a “decision maker” . The ai of the hidden neuron H3 rises to
a large value (≈ 3) by the end of the training, while the { ai} of the other
hidden neurons remained around 1. The hidden neuron H3 has therefore
become a near-binary stochastic neuron. Its output is likely to indicate which
cluster the datum presented to visible neurons belongs to.

To highlight the modelling richness of the CRBM and to demonstrate its
ability to classify real data [8], we have trained a CRBM with four hidden
neurons to model the ECG data used in [15] and [16]. After training, the
CRBM was able to reconstruct both normal heartbeats and ventricular
ectopic beats (VEBs) (Fig.5), despite the fact that the VEBs represent merely
1% of training data. Furthermore, one hidden neuron became near-binary
stochastic after training, as did the hidden neuron H3 in Fig.4b. This hidden
neuron was thus used to indicate the presence of VEBs in the testing data, as
depicted in Fig.6. The strong peaks in Fig.6 highlight the VEBs clearly. VL
marks the minimum output corresponding to a VEB and QH marks the

1 65
−0.7

0

0.7
Norm.
Recon.

 1 65
−0.7

0

0.7
VEB
Recon.

 (a) (b)

Figure #-5. The ECG traces, of (a) normal heartbeats (b) ectopic beats, sampled from training
data (solid line) and reconstructed by the trained CRBM (dashed line) after 20 steps of Gibbs
sampling from initially-random input.

#. Unsupervised Probabilistic Neural Computation in Analogue VLSI 7

0 200 400 600 800 1000 1200 1400 1600
−1

−0.5

0

0.5

1

VL

QH

Vth= −0.25

Vth= −0.75

Figure #-6. The output of the decision-maker hidden neuron in response to 1700 testing data.

maximum output corresponding to a normal heartbeat. A simple linear
classifier with threshold between the two dashed lines will detect VEBs with
an accuracy of 100%. Compared to [16] where a 64-16-64 MLP was trained
to model the same data, the best accuracy achieved was only 99.3%. The
CRBM is therefore a reliable classifier, and it is expected that layering a
supervised classifier on the CRBM, to “ fuse” the output activities of hidden
neurons, wil l lead to improved results.

4. SIMPLIFICATION FOR HARDWARE
IMPLEMENTATION

The training rules in Eq.(2) can be simplified to further facilitate their
hardware implementation. Updating the parameters by variable-size steps is
more demanding than is a fixed-size step. We therefore chose to take only
the sign of the contrastive divergence [15]. The bracket 〈⋅〉 in Eq.(2) denotes
the expectation value over all the training data. However, accumulating and
retaining all these values is very impractical and area costly. We therefore
approximate the expectation value by the average of only four training data
as opposed to that of all training data. The simplified training rules are
written as; � �

� ����� ����
��

��	�

�

���

 ����
����� ������
�����
��� ���

�
�

 (3)

where si and sj represent the state of neuron i and j. Note that the
denominator 1/ai

2 in Eq.(2) is also absorbed and 〈⋅〉4 indicates the average
over four training data.

To validate the simplifications made, a CRBM with four hidden neurons
was trained with Eq.(3) to model the artificially-generated training data
previously used in Sec.3. The number of training data was reduced to 20, as

8 Chapter #

−1 0 1
−1

0

1

 −1 0 1
−1

0

1

 (a) (b)

Figure #-7. (a)20 artificially-generated training data (b) 200 data points reconstructed by the
CRBM after 20 steps of Gibbs sampling

shown in Fig.7a, in order to simplify the hardware testing. Fig.7b shows the
data points reconstructed by the CRBM after 30,000 training epochs with ηw
= 1.5, ηa = 15 for the visible neurons and ηa = 1 for hidden neurons. Fig.7b
reveals that the CRBM was still able to capture the correct distribution of the
training data. Therefore, the simplifications of the training rules made in
Eq.(3) reduce the hardware complexity at the only cost of a slightly slower
convergence time, with this set of data.

5. A NOISY NEURON IN VLSI

Fig.8 shows the circuit diagram of a noisy neuron. The outputs of the
wide-range four-quadrant multipliers [12] are summed up into a current
representing Σjwijsj, while the differential pair, Mna and Mnb, transforms the
noise voltage vni into a noise current ini = gm (vni-Vnr). The voltage Vsigma then
controls the transconductance gm, scaling the noise current as σ in Eq.(1).
The I-V converter, composed of an operational amplifier and a voltage-
controlled active resistor, subsequently feeds its output to the sigmoid
function. The exponential nonlinearity of the sigmoid function is achieved

�
�

���
���

� �
���

� �
�	�
��
 ��� �

��� �

�	� � � �	� � �
������ �

� �

� � � �

� � � � � �

� �

��� �

� ! � �

� �
 " � �

� � � � � �

 !

Figure #-8. The circuit diagram of a noisy neuron

#. Unsupervised Probabilistic Neural Computation in Analogue VLSI 9

by operating the PMOS differential pair, Mbp1 and Mbp2, in the lateral
bipolar mode [17], resulting in a differential output current as following.

���
����� ����� 	�

���������� �

������� ���� � (4)

where � !"
 denotes the sigmoid function ϕ (⋅) with θH = –θL = 1, and

Vt=kT/q is the thermal voltage. The resistor RL finally converts io into the
voltage vo=ioRL+Vsr. Eq.(4) indicates that Vai controls the feedback resistance
of the I-V converter, and consequently adapts the nonlinearity of the sigmoid
function as ai in Eq.(1). The measured DC characteristics of the fourquadrant
multiplier and the sigmoid function, corresponding to various Vai, are shown
in Fig.9. To ensure the normal operation of the voltage-controlled resistor,
the voltage Vai are limited to [1, 3]V [12].

The noise generator is implemented by Linear Feedback Shift Register
(LFSR) [18].Fig.10a shows the measured amplitude distribution of one

0.0
 2.5
 5.0

-3.0µ

-2.0µ

-1.0µ

0.0

1.0µ

2.0µ

3.0µ

 Vsi=1.5

 Vsi=1.75

 Vsi=2.0

 Vsi=2.25

 Vsi=2.5

 Vsi=2.75

 Vsi=3.0

 Vsi=3.25

 Vsi=3.5

Io
ut

 (
am

ps
)

Vw (volts)

-50.00µ
 -25.00µ
 0.00
 25.00µ
 50.00µ

1.5

2.0

2.5

3.0

3.5

V
o

(v
ol

ts
)

Isum (amps)

 Vaj=1.0

 Vaj=1.4

 Vaj=1.8

 Vaj=2.2

 Vaj=2.6

 Vaj=3.0

 (a) (b)

Figure #-9. The measured DC characteristics of (a) a wide-range four-quadrant multiplier and
(b) a sigmoid function with variable nonlinearity.

$ # % & %&
' &
&�&
(&
&�&

)+*-,�. / 0 1�2�354 687
9 :;<=

&�> & $?& > &8@ ' &�> &�@BA
&�> &�@ (&�> &�@C% &
&�> &�@&
D$
D

EF GHI
J K L+M5N O�P

Q RS

Figure #-10. The measured (a) amplitude distribution of noise signal and (b) the output of a
noisy neuron with the injection of the signal in (a).

10 Chapter #

channel of the LFSR noise generator. The distribution approximates a
Gaussian distribution. The maximum amplitude of the noise input vni is
scaled to 0.4V and injected into the noisy neuron. Fig.10b shows the
measured output of the noisy neuron with { si} sweeping between 1.5 and
3.5V, { wij} = 4V, and Vai=1.8V. Such { si} and { wij} forces the neuron’s
output to sweep a sigmoid-shaped curve as Fig.9b, while the noise injection
disturbs the curve to give a continuous-valued probabilistic output. A neuron
state Vsi was sampled periodically and hold with negligible clockfeedthrough
whenever the clock went low. So our noisy neuron has a continuous-valued
probabilistic output rather than the binary-valued output, which the
stochastic neuron of the Boltzmann Machine in [19] has.

6. MINIMISING-CONTRASTIVE-DIVERGENCE
TRAINING IN VLSI

The block diagram of the MCD training circuit in VLSI, along with the
digital control signals, is depicted in Fig.11a. During the training mode
(

������������
=1), the first two clocks, CKsi and CKsj, sample si and sj and the

four-quadrant multiplier produces a current I+ proportional to si⋅sj. Then
CK+ samples and memorises I+ . The one-step Gibbs sampled states � i and � j
are sampled by CKsip and CKsjp to produce another current I–. CKq then
sample and holds the output of current subtractor, Isub , which represents the
difference between the initial data and its one-step reconstruction. It should
be noted that using the same multiplier to compute si⋅sj and � i⋅� j enhances the
training quality, as the subtractor cancels the offsets and other non-idealities
of the multiplier. The previous clocking sequence is repeated for four times,
such that four Isub are accumulated and averaged to produce Iave, which

	�
 �
 � � �� � ���
 � �
��� �

�������������� �����

� � ! � " #
 $ � $� � � � % � %���# � � # �

&'

(')

*+

*+ ,

-�. / . 0 1 2�3 4 5 0 6 4 2

7�8 6 6 9 5 0 :1 3 3 8 ;�8 2 1 0 . 5�/ <1 = 9 6 1 / . 5�/�3 . 6 3 8 . 0

>? @A

B CEDB F�D

GHIH

J K L M NO

PRQTS�U

V�WRX�Y Z

[�\R] ^

V�WRX _ Z

`aRb

c�dfe
c�dfg�h i

j kj
lnmpoqRrso t

qRu
lnm�v wxlnm�y z

ls{ | mpt

} v ~��
} � � �

} � o �

qRrT�
qRrs�

qRrT� y

qRrT� y t

qRrT� �

qRrT� � t

} �

}

Figure #-11. (a)The diagram of the MCD training circuit and (b)its digital control signals

#. Unsupervised Probabil istic Neural Computation in Analogue VLSI 11

represents 〈sisj〉4 – 〈

�
i
�

j〉4 in Eq.(3). The sign circuit [20] then compares Iave to
a reference current to determine the training direction (DIR). Finally, the
training circuit, triggered by CKup, “ nudges” the voltage stored on the Cw up
or down accordingly. The dash-lined box represents the voltage-limiting
circuit [12] used only for the parameters { aj} , whose range is limited to [1,3]
V. In the refresh mode (������ ����� =0), the signal REFR, rather than DIR,
determines the updating direction, maintaining the parameter to a learnt
value for the reconstruction phase of multi-step Gibbs sampling.

Fig.12a shows the circuit of our current subtractor. Its accuracy is
enhanced by using improved Wilson current mirrors to minimise the effect
of channel length modulation. The bias current Ibias defines the reference-
zero current, such that the output current Isub is always non-negtive. The sum
of the current inputs Iin+ + Ibias is then accurately mirrored to M8 & M6,
while the current I in– is mirrored to M13 & M15. As a consequence, the
difference current, I in+ – I in–+ Ibias, is mirrored to the output transistors M20
and M18. The measured DC characteristics of the current subtractor are
depicted in Fig.12b, revealing that the response is very linear. The bottom
graph of Fig.12b expresses the error, i.e. the non-linearity, as a percentage.
The error remains extremely low (< 5%) in the critical range where Iin+ ≈ Iin–	

Ibias

M22

M21

M20M19

M18M17

M16

Iout

Vdd

M15

Iin−

M14M13

M12M11

M10M9

M8M7

M6

M3

M5

M4

M2M1

Iin+

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Iin− (uA)

I (
uA

)

Iout
Ibias
Iin+
Iin−

0 0.5 1 1.5 2 2.5 3

0

10

20

E
rr

o
r

%

1.573

Figure #-12. (a) The circuit and (b) the measured DC characteristic of the current comparator

M3

M11

M4

M13 M15

M5

M14M12

CmemCmemCmemCmem 1/1

43

M8

21Φ Φ Φ

M16

M7

Iin

1/4
M6

Φ
M1 M2

M9 M10

Vdd

Figure #-13. Current accumulator/averaging circuit

12 Chapter #

and only increases when the output current approaches zero.

To accumulate four Isub and calculate its average value, the current
accumulator circuit [20] (Fig.13) juxtaposes four dynamic current mirrors
[21]. Each current mirror is active on a different clock cycle (q1~q4 of
Fig.11). The dynamic current mirror relies on the fact that the current
flowing through a MOS transistor depends primarily on the voltage applied
to its gate. So for two matched MOSFETs, any VGS will generate an identical
current in each transistor. As the current I in produces a voltage at the gate of
the active load M1, each clock cycle passes this voltage onto one of the
short-term memory capacitors, Cmem, biasing another identical transistor.
After four clock cycles, four Isub are memorised on M2, M3, M4 and M5,
and are subsequently mirrored (by M8-M15) and summed at M6. Finally, the
4-to-1 size ratio between M6 and M7 computes the average of the four
currents. Although not represented in Fig.13, dummy switches are used to
compensate for charge injection [22] caused by the switching of q1-q4. The
test results presented in Table 2 show that the accumulation and averaging of
currents occurs with 7% accuracy. However, the consistency of the results
over 6 chips suggests that the output currents are actually mostly affected by
small negative offsets. These offsets are acceptable as they wil l be trained
out during training, reducing the margin of error of our circuit.

The pulse-coded training circuit consists of a pulse generator (Fig.14a)
and the training cell proposed in [23] (Fig.14b). When the training cell is
enabled (EN=1), the training cell charges or discharges the voltage stored on
Cw according to the directional input

� ������� � . Though the training step-
size is adjustable via VP and VN in Fig.14b, we prefer to adjust it by
controlling a width-variable pulse to the input (EN) of the training cell. This
enables us to control the training step precisely by monitoring the pulse
width, controlled by the voltage Vmu [20]. Vmu fixes the training parameter η
of Eq.(3). Since the input capacitance of each training cell is less than 0.1pF,
one pulse generator can control all the training cells, giving rise to a uniform
training. Each of the CRBM training parameters ηw, ηav, and ηah requires
only one pulse generator. Fig.14c shows the chip results. Pulses as short as
5ns (Vmu=2.5V) to as wide as 100ms (Vmu=4.5V) can be obtained. With
VN=0.75V, VP=4.3V and Cw=1pF changes as small as 1mV are easily
achieved, therefore allowing accurate control of the training parameters.

Table #-1. Test results of the current accumulator/averaging circuit
Iin Chip1 Chip2 Chip3 Chip4 Chip5 Chip6 Error(%)
0.5 0.464 0.473 0.463 0.451 0.467 0.474 6.94

0.999 0.937 0.948 0.931 0.878 0.939 0.936 7.09
1.499 1.409 1.419 1.397 1.351 1.405 1.411 6.69
1.999 1.875 1.891 1.857 1.819 1.864 1.881 6.72
2.498 2.335 2.333 2.321 2.263 2.334 2.329 7.15
2.998 2.794 2.816 2.776 2.729 2.792 2.796 7.14

#. Unsupervised Probabilistic Neural Computation in Analogue VLSI 13

���

���

���

� ���
	 �
�
� � ���

���

� � � � �

��� � � � �� �
�

�����

����� � ��� � � �
!"
#
#

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
−8

10
−6

10
−4

10
−2

10
0

10
2

P
u

ls
e

w
id

th
 (

s)

Second Time scale

Milli−second time scale

Micro−second time scale

Nano−second time scale

Vmu (V)

Figure #-14. The pulse-coded training circuit consists of (a) a pulse generator (b) the training
cell proposed in [23]. (c)The measured variable pulse width versus Vmu

The MCD training circuitry controls every single training parameter on-
chip. To ease the testing, si and $ i are fixed at 3.5V, while sj and $ j alternate
between 1.5V and 3.5V, as shown by the traces sj and sjp in Fig.15 and
Fig.16. With the reference zero being defined at 2.5V, the parameters should
learn down when sj = 3.5V and $ j = 1.5V, and learn up when sj = 1.5V and $ j
= 3.5V. Fig.15 shows the measured on-chip training of two parameters, wij
and ai, with different training rates. Both parameters were initially refreshed
to 2.5V when LER/REF=0, and subsequently started to train up and down in
response to the changing sj and sjp when LER/REF=1. As controlled by
different pulse widths (Pulse1 and Pulse2), the two parameters were updated
with different step sizes (10mV and 34mV), but in the same direction. The

%�& % '(& %�) *�& %�) +�& %�) ,-& %.) /�& %�)
*�& ,
*�& /
*�& 0
*�& ,
*�& /
*�& 0

132(4 5(6(*132(4 5(6�'7(8�9-: 938�;< = >
<
=

?@A

BDC EGF.H I
J

K@

Figure #-15. Measurement of parameter ai and wij training in different training rates

14 Chapter #

��� ��� ��� ��� ��� ��� ��� ��� 	�� ���
�� ��� ��� ���
��� �

��� 	
��� �

��� 	

��� �

��
 ����� ���

� � �
���

������� ����
!�"�# ����$
!�"�# ����%

&'

(')

Figure #-16. Measurement of parameter ai and wij training in different direction

trace of parameter ai shows digital noise attributable to sub-optimal layout
and has been improved in subsequent design. Fig.15 shows the measured on-
chip training of two parameters, wij and ai, in different directions. Both
parameters were refreshed to 3.5V and the voltage Vmax for ai set to 3V.
Therefore, the voltage-limiting circuit forces ai to decrease toward Vmax,
while wij remains training up and down when LER/REF=1.

7. CONCLUSION

The Continuous Restricted Boltzmann Machine is a probabili stic neural
algorithm amenable to hardware implementation. Simulation results show
that the CRBM models the variability of data by adapting not only its
weights but also its “ internal noise” to guarantee a robust output for
classification. The measured results, on the other hand, demonstrate on-chip
unsupervised training for the CRBM neurons. The full CRBM system wil l
thus has continuous probabilistic behaviour that enhances not only the
system’s “ intelligence” for classification, but also the system’s immunity to
noise and local computational errors. As the continuous stochastic behaviour
relies on the noise injection into the system, the full CRBM system further
opens a possibil ity of utilising VLSI intrinsic noise for computation. This
issue is especially important when the fabrication process enters the deep-
sub-micron era, where VLSI intrinsic noise becomes non-negligible.

#. Unsupervised Probabilistic Neural Computation in Analogue VLSI 15

References

 [1] Specht, D. F., "Probabilistic Neural Networks," Neural Networks, vol. 3 pp. 109-
118, 1990.

 [2] Aibe, N., Yasunaga, M., Yoshihara, I., and Kim, J. H. A Probabilistic Neural
Network Hardware System Using a Training-parameter Parallel Architecture. 3, 2270-
2275. 12-5-2002. Proceedings of the 2002 International Joint Conference on Neural
Networks.

 [3] Hsu, D., Bridges, S., Figueroa, M., and Diorio, C. Adaptive Quantization and
Density Estimation in Silicon. 15. 2003. Advances in Neural Information Processing
Systems (NIPS02). 2002.

 [4] Bout, D. E. V. D. and Mil lerIII, T. K., "A Digital Architecture Employing
Stochasticism for the Simulation of Hopfield Neural Nets," IEEE Transactions on Circuits
and Systems, vol. 36, no. 5, pp. 732-738, May1989.

 [5] Clarkson, T. G., Gorse, D., Taylor, J. G., and C.K.Ng, " Training Probabilistic RAM
Nets Using VLSI Structures," IEEE Transactions on Computers, vol. 41, no. 12, pp. 1552-
1561, Dec.1992.

 [6] Clarkson, T. G., Ng, C. K., and Guan, Y., "The pRAM : An Adaptive VLSI Chip,"
IEEE Transactions on Neural Networks, vol. 4, no. 3, pp. 408-412, May1993.

 [7] Brown, B. D. and Card, H. C., "Stochastic Neural Compuation I : Computational
Elements," IEEE Transactions on Computers, vol. 50, no. 9, pp. 891-905, Sept.2001.

 [8] Chen, H. and Murray, A. F., "A Continuous Restricted Boltzmann Machine with an
Implementable Training Algorithm," IEE Proceedings of Vision, Image and Signal
Processing, vol. 150, no. 3, pp. 153-158, 2003.

 [9] Hinton, G. E. and Sejnowski, T. J., "Training and Retraining in Boltzmann
Machine," in Rumelhart, D., McClelland, J. L., and the PDP Research Group (eds.)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
Cambridge, Massachusetts: MIT, 1986, pp. 283-317.

 [10] Movellan, J. R., "A training theorem for networks at detailed stochastic
equilibrium," Neural Computation, vol. 10, no. 5, pp. 1157-1178, 1998.

 [11] Smolensky, P., "Information Processing in Dynamical Systems: Foundations of
Harmony Theory," in Rumelhart, D., McClelland, J. L., and the PDP Research Group (eds.)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
Cambridge, Massachusetts: MIT, 1986, pp. 195-281.

 [12] Chen, H., Fleury, P., and Murray, A. F. Minimising Contrastive Divergence in
Noisy, Mixed-mode VLSI Neurons. Advances in Neural Information Processing Systems
(NIPS2003) . 2004.

 [13] Frey, B. J. Continuous Sigmoidal Belief Networks Trained Using Slice Sampling. 9,
452-458. 1997. Advances in Neural Information Processing Systems.

 [14] Hinton, G. E., "Training Products of Experts by Minimizing Contrastive
Divergence," Neural Computation, vol. 14, no. 8, pp. 1771-1800, Aug.2002.

 [15] Murray, A. F., "Novelty detection using products of simple experts - a potential
architecture for embedded systems," Neural Networks, vol. 14, no. 9, pp. 1257-1264, 2001.

 [16] Tarassenko, L., Clifford, G., and Townsend, N., "Detection of ectopic beats in the
electrocardiogram using an auto-associative neural network," Neural Processing Letters,
vol. 14, no. 1, pp. 15-25, 2001.

 [17] Vittoz, E., "MOS Transistor Operated in the Lateral Bipolar Mode and Their
Application in CMOS Technology," IEEE Jounals of Solid-State Circuits, vol. SC-18, no.
3, pp. 273-279, June1983.

16 Chapter #

 [18] Alspector, J., Gannett, J. W., Haber, S., Parker, M. B., and Chu, R., "A VLSI-

efficient Technique for Generating Multiple Uncorrelated Noise Sources and Its
Application to Stochastic Neural Networks," IEEE Transactions on Circuits and Systems,
vol. 38, no. 1, pp. 109-123, 1991.

 [19] Alspector, J., Jayakumar, A., and Luma, S. Experimental Evaluation of Training in
a Neural Microsystem. 4, 871-878. 1992. Advances in Neural Information Processing
Systems (NIPS91).

 [20] Fleury, P. and Murray, A. F. Mixed-Signal VLSI Implementation of the Products of
Experts' Contrastive Divergence Training Scheme. 5, 653-656. 2003. Proceedings of the
IEEE International Symposium on Circuits And Systems (ISCAS' 2003).

 [21] Wegmann, G. and Vittoz, E. A., "Basic Principles of Accurate Dynamic Current
Mirrors," IEE Proceedings on Circuits, Devices and Systems, vol. 137, no. 2, pp. 95-100,
1990.

 [22] Wegmann, G., Vittoz, E. A., and Rahali, F., "Charge Injection in Analog { MOS}
Switches," IEEE Journal of Solid-State Circuits (JSSC), vol. 22, no. 6, pp. 1091-1097,
Dec.1987.

 [23] Cauwenberghs, G., "An Analog VLSI Recurrent Neural Network Training a
Continuous-Time Trajectory," IEEE Transactions on Neural Networks, vol. 7, no. 2, pp.
346-361, Mar.2003.

